1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sidana [21]
3 years ago
13

A projectile is shot a cliff of 20m high, at an angle of 60o with respect to the horizontal, and it lands on the ground 8 second

s later. Find: a) the initial speed ? b) the speed of the projectile after 4 s c) the horizontal range d)the maximum height it reached e) what was the speed of the projectile when it landed on the ground?
Physics
1 answer:
skelet666 [1.2K]3 years ago
6 0

Answer:

a) The initial speed of the projectile is approximately 42.410 meters per second.

b) The speed of the projectile after 4 seconds is approximately 21.352 meters per second.

c) The horizontal range of the projectile is 169.64 meters.

d) The maximum height of the projectile is 68.775 meters.

e) The speed of the projectile when it landed on the ground is approximately 46.807 meters per second.

Explanation:

According to the statement, the projects shows a parabolic motion, which consists in the combination of horizontal uniform motion and vertical uniformly accelerated motion due to gravity. This motion is represented by the following equations of motion:

x = x_{o} + v_{o}\cdot t\cdot  \cos \theta (1)

y = y_{o} + v_{o}\cdot t\cdot \sin \theta + \frac{1}{2}\cdot g\cdot t^{2} (2)

Where:

x_{o}, x - Initial and current horizontal position, measured in meters.

y_{o}, y - Initial and current vertical position, measured in meters.

\theta - Launch angle, measured in sexagesimal angle.

g - Gravitational acceleration, measured in meters per square second.

t - Time, measured in second.

a) By using (2) and knowing that y_{o} = 20\,m, y = 0\,m, t = 8\,s, \theta = 60^{\circ} and g = -9.807\,\frac{m}{s^{2}}, then initial speed of the projectile is:

v_{o}\cdot t \cdot \sin \theta = y-y_{o}-\frac{1}{2}\cdot g\cdot t^{2}

v_{o} = \frac{y-y_{o}-\frac{1}{2}\cdot g\cdot t^{2} }{t\cdot \sin \theta}

v_{o} = \frac{0\,m-20\,m-\frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot (8\,s)^{2} }{(8\,s)\cdot \sin 60^{\circ}}

v_{o} \approx 42.410\,\frac{m}{s}

The initial speed of the projectile is approximately 42.410 meters per second.

b) The vertical component of the velocity of the projectile is determine by differentiating (2) in time and substitute all known values:

v_{y} = v_{o}\cdot \sin \theta +g\cdot t (3)

(v_{o} \approx 42.410\,\frac{m}{s}, \theta = 60^{\circ}, g = -9.807\,\frac{m}{s^{2}} and t = 4\,s)

v_{y} = -2.5\,\frac{m}{s}

The horizontal component of the velocity of the projectile is:

v_{x} = v_{o}\cdot \cos \theta

v_{x} = 21.205\,\frac{m}{s}

And the speed of the projectile is determined by Pythagorean Theorem:

v = \sqrt{v_{x}^{2}+v_{y}^{2}}

v = \sqrt{\left(21.205\,\frac{m}{s} \right)^{2}+\left(-2.5\,\frac{m}{s} \right)^{2}}

v \approx 21.352\,\frac{m}{s}

The speed of the projectile after 4 seconds is approximately 21.352 meters per second.

c) By (1) we find the horizontal range of the projectile:

(x_{o} = 0\,m, v_{o} \approx 42.410\,\frac{m}{s}, \theta = 60^{\circ}, g = -9.807\,\frac{m}{s^{2}} and t = 8\,s)

x = 0\,m + \left(42.410\,\frac{m}{s} \right)\cdot (8\,s)\cdot \cos 60^{\circ}

x = 169.64\,m

The horizontal range of the projectile is 169.64 meters.

d) The projectile reaches its maximum height when velocity is zero. By (3) and knowing that v_{y} = 0\,\frac{m}{s}, v_{o} \approx 42.410\,\frac{m}{s} and g = -9.807\,\frac{m}{s^{2}}, the time associated with maximum height is:

0\,\frac{m}{s} = \left(42.410\,\frac{m}{s}\right)\cdot \sin 60^{\circ}+\left(-9.807\,\frac{m}{s^{2}} \right) \cdot t

t = 3.745\,s

And by (2) and knowing that y_{o} = 20\,m, v_{o} \approx 42.410\,\frac{m}{s}, t = 3.745\,s, \theta = 60^{\circ} and g = -9.807\,\frac{m}{s^{2}}, the maximum height reached by the projectile is:

y = 20\,m + \left(42.410\,\frac{m}{s} \right)\cdot (3.745\,s)\cdot \sin 60^{\circ}+\frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot (3.745\,s)^{2}

y = 68.775\,m

The maximum height of the projectile is 68.775 meters.

e) If we know that y_{o} = 20\,m, v_{o} \approx 42.410\,\frac{m}{s}, t = 8\,s, \theta = 60^{\circ} and g = -9.807\,\frac{m}{s^{2}}, the components of the speed are, respectively:

v_{y} = \left(42.410\,\frac{m}{s}\right)\cdot \sin 60^{\circ} + \left(-9.807\,\frac{m}{s^{2}} \right)\cdot (8\,s)

v_{y} = -41.728\,\frac{m}{s}

v_{x} = v_{o}\cdot \cos \theta

v_{x} = 21.205\,\frac{m}{s}

And the speed of the projectile is determined by Pythagorean Theorem:

v = \sqrt{v_{x}^{2}+v_{y}^{2}}

v = \sqrt{\left(21.205\,\frac{m}{s} \right)^{2}+\left(-41.728\,\frac{m}{s} \right)^{2}}

v \approx 46.807\,\frac{m}{s}

The speed of the projectile when it landed on the ground is approximately 46.807 meters per second.

You might be interested in
A 0.50-kg croquet ball is initially at rest on the grass. When the ball is struck by a mallet, the average force exerted on it i
NeTakaya

The impulse given to the ball is equal to the change in its momentum:

J = ∆p = (0.50 kg) (5.6 m/s - 0) = 2.8 kg•m/s

This is also equal to the product of the average force and the time interval ∆t :

J = F(ave) ∆t

so that if F(ave) = 200 N, then

∆t = J / F(ave) = (2.8 kg•m/s) / (200 N) = 0.014 s

7 0
2 years ago
A window washer who does not want to change his position will want the forces acting on him to be ____________.
natali 33 [55]
My answer is a balanced
6 0
3 years ago
What is a constellation as astronomers define it today? What does it mean when an astronomer says, “I saw a comet in Orion last
MissTica

Explanation:

Constellation: The complete sky has been divided in 88 different areas, in a way we have divided Earth in countries, not necessarily having same shapes and size. These 88 areas are known as constellations. These contains a lot of stars. When we join the brightest stars together we can imagine a shape out of them which is called as Asterism. Most of the people are unaware of this difference. Some of the famous constellations are Orion, Taurus, Gemini, Hydra, Ursa Major etc.

When an astronomer says that there is a comet is in the Orion, he means that a comet is in the boundaries of Orion constellation.

4 0
3 years ago
Explain how you can improve the accuracy of a measurement. <br>​
yKpoI14uk [10]
You use more significant figures. 5 sigfigs (1.0985) is more accurate than 2 sigfigs (1.0)
8 0
2 years ago
Read 2 more answers
A car travels east at a constant velocity. The net force on the car is:
Scrat [10]
F=ma
As velocity is constant, a=0
So, F=0

Hope this helps!
6 0
3 years ago
Other questions:
  • A gas is a state of matter that has particles with ____________ energy that move very fast because there is a lot of space betwe
    12·1 answer
  • The standard unit of work in the metric system is named after the scientist _____.
    8·2 answers
  • An RC circuit takes t = 2.5 ms to charge to 35% of its full charge after it weas connected to a battery, What is the total time
    14·1 answer
  • An object thrown straight up a distance ymaxymax. After tt seconds, it falls back and is caught again, just as it reaches the he
    10·1 answer
  • Band of colors produced when white light is separated into all its colors
    11·1 answer
  • A solid conducting sphere has net positive charge and radius r = 0.800 m . At a point 1.20 m from the center of the sphere, the
    11·1 answer
  • Assume that the car at point A and the one at point E are traveling along circular paths that have the same radius. If the car a
    10·1 answer
  • Here you go.................
    14·2 answers
  • How does time relate to motion
    14·1 answer
  • 14) A race car accelerates from rest to a velocity of 41 m/s in 480 m. What is the acceleration of the race car?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!