Answer: Kinetic Molecular Theory claims that gas particles are in continuous motion and completely demonstrate elastic collisions. Kinetic Molecular Theory can be used to describe the rules of both Charles and Boyle. A series of gas particles only has an average kinetic energy that is directly proportional to absolute temperature.
The anwser is 10005.8 newtons
The answer is 45 degrees. I am not doing a field experiment for you that involves a cannon and a day's work, for 5 points.
The motion of the buoy is a composition of two independent motions:
- a uniform motion on the horizontal axis, with constant speed vx=50 m/s
- an uniformly accelerated motion on the vertical axis, with constant acceleration

Since we want to find the vertical displacement, we are only interested in the vertical motion.
The law of motion on the vertical direction is given by:

where
h is the initial height of the buoy

is the initial vertical velocity of the buoy, which is zero
t is the time
We know that the buoy lands after t=21 seconds, this means that the vertical position at t=21 s is y(21 s)=0. If we substitute these data into the equation, we can find the value of h, the initial height of the buoy:


And this corresponds to the vertical displacement of the buoy.
Answer:
The coefficient of kinetic friction between the block and the surface is 0.127.
Explanation:
Given that,
The mass of a block, m = 4 kg
The acceleration of the block, a = -1.25 m/s²
We need to find the coefficient of kinetic friction between the block and the surface. The force of friction is given by :

So, the coefficient of kinetic friction between the block and the surface is 0.127.