Answer:
The current in the wire under the influence of the force is 216.033 A
Solution:
According to the question:
Length of the wire, l = 0.676 m

Magnetic field of the Earth, 
Forces experienced by the wire, 
Also, we know that the force in a magnetic field is given by:



I = 216.033 A
B.Speed of light
The speed of light is used as a reference and is 3x10^8 m/s no matter what.
Hope this helps :)
Answer:
V' = V/2
Explanation:
The voltage across a parallel plate capacitor is given as follows:
V = Q/C
where,
V = Voltage across capacitor
Q = Charge on Capacitor
C = Capacitance of Capacitor = A∈₀/d
Therefore,
V = Qd/A∈₀
where,
A = Area of plate
d = distance between plates
∈₀ = permittivity of free space
FOR CAPACITOR 1:
Q = Q
d = d
A = A
V = V
Therefore,
V = Qd/A∈₀ --------------- equation (1)
FOR CAPACITOR 2:
V' = ?
Q' = Q
d' = d
A' = 2A
Therefore,
V' = Q'd'/A'∈₀
V' = Qd/2A∈₀
V' = (1/2)(Qd/A∈₀)
using equation (1):
<u>V' = V/2</u>
We have that for the Question "A 2kg book is held against a vertical wall. The <em>coefficient </em>of friction is 0.45. What is the minimum force that must be applied on the <em>book</em>, perpendicular to the wall, to prevent the book from slipping down the wal" it can be said that the minimum force that must be applied on the <em>book is</em>
From the question we are told
A 2kg book is held against a vertical wall. The <em>coefficient </em>of friction is 0.45. What is the minimum force that must be applied on the <em>book</em>, perpendicular to the wall, to prevent the book from slipping down the wal
Generally the equation for the Force is mathematically given as

F=44N
Therefore
the minimum force that must be applied on the <em>book is</em>
F=44N
For more information on this visit
brainly.com/question/23379286