Given:
The right triangular prism.
Height of prism = 28 in.
Hypotenuse of base = 25 in.
leg of base = 24 in.
To find:
The lateral surface area of the prism.
Solution:
Pythagoras theorem:

Using Pythagoras theorem in the base triangle, we get




The perimeter of the triangular base is:


Lateral area of a triangular prism is:

Where, P is the perimeter of the triangular base and h is the height of the prism.
Putting
in the above formula, we get


Therefore, the lateral area of the prism is 1568 in².
Answer:
Step-by-step explanation:
center: (-2,3)
Radius: 5
Answer:
20>4
Step-by-step explanation:
12-3 forget about the x 12-3=9 . 9+11=20
(17-9)=8 . 8-4 =4
so your answer is correct
We are given a figure where M, N , O and P points are given.
We need to explain if points O, N, and P collinear or not.
Note: All co-linear points are in a straight line.
From the figure, we can see that <em>O and N points are in a straight line but point P is aside.</em>
So, the points O, N, and P are not collinear.
Therefore, correct option is "<u>No, the three points are not collinear</u>".