Answer:
Q = 1267720 J
Explanation:
∴ QH2O = mCpΔT
∴ m H2O = 500 g
∴ Cp H2O = 4.186 J/g°C = 4.183 E-3 KJ/g°C
∴ ΔT = 120 - 50 = 70°C
⇒ QH2O = (500 g)(4.183 E-3 KJ/g°C)(70°C) = 146.51 KJ
∴ ΔHv H2O = 40.7 KJ/mol
moles H2O:
∴ mm H2O = 18.015 g/mol
⇒ moles H2O = (500 g)(mol/18.015 g) = 27.548 mol H2O
⇒ ΔHv H2O = (40.7 KJ/mol)(27.548 mol) = 1121.21 KJ
⇒ Qt = 146.51 KJ + 1121.21 KJ = 1267.72 KJ = 1267720 J
Answer:
The direct channels by which extraction can affect the economy are of particular interest. The development of mines or oil and gas fields can result in significant shocks to a regional economy, generating jobs and drawing in capital from other regions and countries.
Explanation:
Absorption occurs when photons from incident light hit atoms and molecules and cause them to vibrate. The more an object's molecules move and vibrate, the hotter it becomes. This heat is then emitted from the object as thermal energy.
Considering the Charles's law, the sample of carbon dioxide gas will occupy 308.72 mL.
<h3>Charles's law</h3>
Charles's law establishes the relationship between the temperature and the volume of a gas when the pressure is constant. This law says that the volume is directly proportional to the temperature of the gas: for a given sum of gas at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases.
Mathematically, Charles's law states that the ratio between volume and temperature will always have the same value:

Considering an initial state 1 and a final state 2, it is fulfilled:

<h3>Final volume in this case</h3>
In this case, you know:
- V1= 250 mL
- T1= 25 C= 298 K (being 0 C=273 K)
- V2= ?
- T2= 95 C= 368 K
Replacing in Charles's law:

Solving:

<u><em>V2= 308.72 mL</em></u>
Finally, the sample of carbon dioxide gas will occupy 308.72 mL.
Learn more about Charles's law:
brainly.com/question/4147359
#SPJ1