Explanation:
George Washington Carver was born enslaved and went on to become one of the most prominent scientists and inventors of his time, as well as a teacher at the Tuskegee Institute. Carver devised over 100 products using one major crop — the peanut — including dyes, plastics and gasoline.
<h3><u>Answer</u>;</h3>
A. When a reaction is at chemical equilibrium, a change in the system will cause the system to shift in the direction that will balance the change and help the reaction regain chemical equilibrium.
<h3><u>Explanation</u>;</h3>
- Le Chatelier's principle states that when a change or a "stress" is placed on a system that is at equilibrium, the system will shift in such a way to relieve that change or stress.
- The stresses include; changing the concentration of reactants or products, altering the temperature in the system and changing the pressure of the system.
- Therefore; <u><em>when a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. </em></u>
Answer:
a straight line passing from side to side through the center of a body or figure, especially a circle or sphere.
Explanation:
a straight line passing from side to side through the center of a body or figure, especially a circle or sphere.
To calculate how many photons are in a certain amount of energy (joules) we need to know how much energy is in one photon.
Start by using two equations:
Energy of a photon = Frequency * Planck's constant (6.626 * 10^(-34) J-s)
Speed of light (constant 3 * 10^8 m/s) = Frequency * Wavelength
Which means:
frequency = Speed of Light / Wavelength
So energy of a photon = (Speed of light * Planck's constant)/(Wavelength)
You may have seen this equation as E = hc/<span>λ</span>
We have a wavelength of 691 nm or 691 * 10^-9 meters
So we can plug in all of our knowns:
E = (6.626 * 10^(-34) J-s) * (3.00 * 10^8 m/s) / (691 * 10^-9 m) =
2.88 * 10^(-19) joules per photon
Now we have joules per photon, and the total number of joules (0.862 joules)
,so divide joules by joules per photon, and we have the number of photons:
0.862 J/ (2.88 * 10^(-19) J/photon) = 3.00 * 10^18 photons.
Zeff is the effective nuclear charge wherein, Z resembles the number of protons in the nucleus while S corresponds to the number of non-valence electrons.
Zeff = Z - S
Silicon has 14 protons; its electron configuration is [Ne] 3s2 3p2. Its
non-valence electrons is in the n = 1 and n =2 shells. There are 2
electrons in n = 1 and 8 in n = 2, so there are a total of 10
non-valence electron.
<span><span>Z<span>eff</span></span>= 14−10= 4</span>
So, the answer is 4.