Answer:
Explanation:
To solve this problem, we must understand the relationship between mass of a substance and the number of atoms.
Atoms are the smallest indivisible particles of any matter. A substance can be made up of several number of atoms in their space.
The mass of any substance is a function of the amount of atoms its contains.
The mass of a substance is related in chemistry to the amount of atoms its contains using the parameter called the number of moles.
A mole is the amount of substance that contains the Avogadro's number of particles. This number is 6.02 x 10²³ particles. The particles here can be protons, neutrons, electrons, atoms e.t.c.
Now,
Number of moles = 
Molar mass of copper = 63.6g/mole
Number of moles =
= 0.03mole
Since 1 mole of a substance contains 6.02 x 10²³atoms
0.03 mole of copper will contain 0.03 x 6.02 x 10²³atoms
= 1.89 x 10²² atoms
He needs to add 1.89 x 10²² atoms to make 2g of the sample.
Hello there.
<span>
4 multicellular yes autotrophic It is unable to move around its environment.
</span><span>D. kingdom protista </span>
We are given the following equation:
y = y0 e^-0.0001216 t
where y = 1/5 y0, y0 is the original amount
So solving for time t:
1/5 y0= y0 e^-0.0001216 t
t = 13,235.51 years
So the human died about 13235.5 years ago
The Boiling Point of 2-methylpropane is approximately -11.7 °C, while, Boiling Point of <span>2-iodo-2-methylpropane is approximately 100 </span>°C.
As both compounds are Non-polar in nature, So there will be no dipole-dipole interactions between the molecules of said compounds.
The Interactions found in these compounds are London Dispersion Forces.
And among several factors at which London Dispersion Forces depends, one is the size of molecule.
Size of Molecule:
There is direct relation between size of molecule and London Dispersion forces. So, 2-iodo-2-methylpropane containing large atom (i.e. Iodine) experience greater interactions. So, due to greater interactions 2-iodo-2-methylpropane need more energy to separate from its partner molecules, Hence, high temperature is required to boil them.