Answer:
Potassium chloride
Explanation:
A solution is formed by a solvent and one or more solutes.
The solvent is the species that is in major proportion and usually defines the state of aggregation of the solution, while the solute/s is/are in minor proportion.
Also, water is known as the universal solvent, so in any solution containing water, it is considered as the solvent.
Then, in an aqueous solution of potassium chloride the solute is potassium chloride.
Answer:
Alkylenes: any of the series of unsaturated hydrocarbons containing a triple bond, including acetylene.
alkanes: Alkanes are organic compounds that consist entirely of single-bonded carbon and hydrogen atoms and lack any other functional groups. Alkanes have the general formula CnH2n+2 and can be subdivided into the following three groups: the linear straight-chain alkanes, branched alkanes, and cycloalkanes.
Explanation:
Ionic bonding would be the answer because they transfer electrons. This gives them a charge. If it loses electrons, it becomes an cation, with a positive charge. While if they gain an electron, they get a negative charge, and become a anion. Transferring an electron is losing or gaining, therefore your answer would be that since electrons are permanently being transferred, the answer is IONIC BOND.
Covalent bonds is a wrong answer because they share electrons, which gives them no charge (neutral).
Also, metallic bonding is not the correct answer.
So our final answer: A- Ionic bond
Answer:
Take approx 41.7 mL of 12-M HCl in a 1.00-L flask and fill the rest of the volume with distilled water.
Explanation:
Hello,
In this case, for the dilution process from concentrated 12-M hydrochloric acid to 1.00 L of the diluted 0.50M hydrochloric acid, the volume of concentrated HCl you must take is computed by considering that the moles remain constant for all dilution processes as shown below:

Which can also be written in terms of concentrations and volumes:

Thus, solving for the initial volume or aliquot that must be taken from the 12-M HCl, we obtain:

It means that you must take approx 41.7 mL of 12-M HCl in a 1.00-L flask and fill the rest of the volume with distilled water for such preparation.
Best regards.