Answer:
The element that has been oxidized is the N
Explanation:
Zn²⁺(aq) + NH₄⁺(aq) → Zn(s) + NO₃⁻(aq)
See all the oxidation states:
Zn²⁺ → acts with +2
In ammonia, H acts with +1 and N with -3
Zn(s), acts with 0. In all the elements in ground state, the oxidation state is 0.
Zn changed from 2+ to 0. The oxidation number, has decreased.
This element has been reduced.
NO₃⁻ (aq) it's a ion, from nitric acid.
N acts with +5
O acts with -2
The global charge is -1
The N, has increased the oxidation state, so this element is the one oxidized.
Answer:
1) Increasing temperature
2) Stirring
3) Increasing surface area of salt by grinding it
The balanced equation is attached in the image below. The coefficients are 2, 2, blank.
Answer:
Sodium chloride and hydrogen gas are the products of this reaction. If the gas collected has a pressure of 1.05 atm at 298 K, then what volume is the hydrogen
Explanation:
Explanation:
The given data is as follows.
= 0.483,
= 0.173 M,
= 0.433 M,
= 0.306 M,
= 9.0 atm
According to the ideal gas equation, PV = nRT
or, P =
Also, we know that
Density = 
So, P = MRT
and, M = 
= 
= 
= 0.368 mol/L
Now, we will calculate the cell potential as follows.
E = ![E^{o} - \frac{0.0591}{n} log \frac{[Co^{2+}]^{2}[Cl_{2}]}{[Co^{3+}][Cl^{-}]^{2}}](https://tex.z-dn.net/?f=E%5E%7Bo%7D%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%20%5Cfrac%7B%5BCo%5E%7B2%2B%7D%5D%5E%7B2%7D%5BCl_%7B2%7D%5D%7D%7B%5BCo%5E%7B3%2B%7D%5D%5BCl%5E%7B-%7D%5D%5E%7B2%7D%7D)
= 
= 
= 
= 0.483 - 0.0185
= 0.4645 V
Thus, we can conclude that the cell potential of given cell at
is 0.4645 V.