Answer:
electrical
Explanation:
With electrical energy, it's helpful to think of an on/off switch. When the switch is off, the electrical energy is stored as potential energy. When the switch is on, electrical energy is being used as kinetic energy.
<u>Given:</u>
H2(g) + Cl2 (g) → 2HCl (g)
<u>To determine:</u>
The enthalpy of the reaction and whether it is endo or exothermic
<u>Explanation:</u>
Enthalpy of a reaction is given by the difference between the enthalpy of formation of reactants and products
ΔH = ∑nHf (products) - ∑nHf (reactants)
= [2Hf(HCl)] - [Hf(H2) + Hf(Cl2)] = 2 (-92.3) kJ = - 184.6 kJ
Since the reaction enthalpy is negative, the reaction is exothermic
<u>Ans:</u> The enthalpy of reaction is -184. kJ and the reaction is exothermic
<span>Density is a value for
mass, such as kg, divided by a value for volume, such as m3. Density is a
physical property of a substance that represents the mass of that substance per
unit volume. We calculate as follows:
PV = nRT
PV = mRT/ Molar mass
m/V = P(molar mass)/RT
Density = P(molar mass)/RT
Density = 2.0 ( 30.97 ) / 0.08206 ( 20 + 273.15) = 2.57 g/L <----First option</span>
2NH₂ + O₂ → N₂ + 2H₂O
<u>Explanation:</u>
Balancing the equation means, the number of atoms on both sides of the equation must be the same.
In the case of the given equation, we have to find out whether it is balanced or not.
2NH₂ + O₂ → N₂ + 2H₂O
Atoms Number of atoms before balancing after balancing
LHS RHS LHS RHS
N 1 2 2 2
H 2 2 4 4
O 2 1 2 2
To balance the N atoms, we have to put 2 in front of NH₂, and then to balance the H, O atoms, we have to put 2 in front of H₂O, so that each atom in left hand as well as right hand side of the equation was balanced.