<h3>
Answer:</h3>
78.34 g
<h3>
Explanation:</h3>
From the question we are given;
Moles of Nitrogen gas as 2.3 moles
we are required to calculate the mass of NH₃ that may be reproduced.
<h3>Step 1: Writing the balanced equation for the reaction </h3>
The Balanced equation for the reaction is;
N₂(g) + 3H₂(g) → 2NH₃(g)
<h3>Step 2: Calculating the number of moles of NH₃</h3>
From the equation 1 mole of nitrogen gas reacts to produce 2 moles of NH₃
Therefore, the mole ratio of N₂ to NH₃ is 1 : 2
Thus, Moles of NH₃ = Moles of N₂ × 2
= 2.3 moles × 2
= 4.6 moles
<h3>Step 3: Calculating the mass of ammonia produced </h3>
Mass = Moles × molar mass
Molar mass of ammonia gas = 17.031 g/mol
Therefore;
Mass = 4.6 moles × 17.031 g/mol
= 78.3426 g
= 78.34 g
Thus, the mass of NH₃ produced is 78.34 g
Answer:
While weathering and erosion are similar processes, they are not synonymous. Weathering involves the breakdown of rocks and minerals on Earth, whereas erosion involves the removal of soil and rock materials.
Explanation:
The atoms of one element differs from the atoms of other elements in terms of the number of protons they contain. This is often taken as the atomic number of such an atom.
- The number of proton is the best indicator of the atom one is dealing with.
- Based on this number, elements are categorized into distinct columns and rows on the periodic table.
- The atomic number is the number of protons or positively charge particles in the atom.
II.
It is possible to change the identity of an atom. This is only possible by altering the atomic number of the atom.
Only nuclear reactions have this capability.
When an atom undergoes nuclear reaction that involves change in number of protons, transmutation occurs and a new atom forms.
Answer:
Ca^+2
Explanation:
Hence, the correct option is A.