Lateral Area of a cylinder is ; 2πR.H
R=12 mm and H= 15 mm
Then LATERAL area = 2π(12)(15) =48π ≈ 150 mm²
Answer:
A. 2y^4 over x^2
Step-by-step explanation:
4x^4y^6 ÷ 7x^8y^2
First, you will find the GCF of the equation which is: 7x^4y^2 .
Then, you will divide both of the equation by the GCF which will become:
14x^4y^6 ÷ 7x^4y^2 = 2y^4
7x^8y^2 ÷ 7x^4y^2 = x^2
Hence, the final answer is 2y^4 over x^2
This is a classic example of a 45-45-90 triangle: it's a right triangle (one angle of 90) & two other sides of the same length, which means two angles of the same length (and 45 is the only number that will work). With a 45-45-90 triangle, the lengths of the legs are easy to determine:
45-45-90
1-1-sqrt2
Where the hypotenuse corresponds to sqrt2.
Now, your hypotenuse is 10.
To figure out what each leg is, divide 10/sqrt2 (because sqrt2/sqrt2 = 1, which is a leg length in the explanation above).
Problem: you can't divide by radicals. So, we'll have to rationalize the denominator:
(10•sqrt2)/(sqrt2•sqrt2)
This can be rewritten:
10sqrt2/sqrt(2•2)
=10sqrt2/sqrt4
=10sqrt2/2
=5sqrt2
Hope this helps!!
The side lengths of triangle are 6 units, 8 units and 10 units.
<u>SOLUTION:
</u>
Given that, we have to find what is the length side of a triangle that has vertices at (-5, -1), (-5, 5), and (3, -1)
We know that, distance between two points
is given by

Now,

Answer:
a Euclidean space, the sum of angles of a triangle equals the straight angle (180 degrees, π radians, two right angles, or a half-turn). A triangle has three angles, one at each vertex, bounded by a pair of adjacent sides.