Answer:
v = 9.07 m/s
the vertical component of the velocity of the fish relative to the water when it hits the water is 9.07 m/s
Explanation:
Given;
An eagle is flying horizontally at a speed of 4.6 m/s
Initial horizontal velocity uh = 4.6 m/s
Initial vertical velocity uy = 0
Height to fall d = 4.2 m
Acceleration due to gravity g = 9.8 m/s^2
The final vertical velocity of the fish when it hits the water can be calculated using the equation of motion;
v^2 = u^2 + 2as
v^2 = uy^2 + 2gd
uy = 0
v^2 = 2gd
v = √(2gd)
Substituting the given values;
v = √(2×9.8×4.2)
v = 9.073036977771 m/s
v = 9.07 m/s
the vertical component of the velocity of the fish relative to the water when it hits the water is 9.07 m/s
Assume the wooden piece prevents the balloon from rising, is not so heavy as to cause the balloon to descend. and the 15 m/s is horizontal velocity “riding the wind,” That horizontal velocity does not affect the time the wood will take to reach the ground after release. Initial vertical velocity is zero.
s = u t + 1/2 g t^2
s is the height above ground, 300 m.
u is initial vertical velocity, zero.
t is time to reach the ground.
g is acceleration of gravity near Earth, 9.8 m/s^2.
300 m = 0 t + 1/2 (9.8 m/s^2) t^2
300 m = (4.9 m/s^2) t^2
61.22 s^2 = t^2
7.82 seconds = t
Answer: a) close together
Explanation: The electric field lines also represent the intensity of the field, in this sense for strong electric fields it is usually draw the lines close to each other. In constrast when they are far apart the electric field is weak.
Answer:
254 meters (when rounded), assuming you don't count the updraft of the blades, possible wind, and air resistance.
Explanation:
Acceleration of gravity: 9.8 meters per second squared
Bag velocity: 70.56
Height: 254 meters
Initial Velocity: 0