The cross-section of a square pyramid will be a square. The section above the cross-section taken will basically be a similar but smaller square pyramid. D is the correct answer.
Answer:
x = 4
y = 11
Step-by-step explanation:
Set your formula as follow:
2x+3=3x-1 -> 2x+3-3x=-1 -> -x+3 = -1 -> -x=-4 -> x=4
now substitute x for 4 in the following
y-2=2(4)+1 -> y-2=8+1 ->y-2 = 9y -> y=11
Well, if you subtract one you get -1=log4^x. base four on each side: 4(to the power of negative 1)=4(to the power of log base four) x. Four to the power of log base 4 cancels, and you're left with 4 to the power of -1=x. the negative exponent recipricates, so x=1/4. you're welcome.
Answer: Bub I dont Know How I am Stuck On It Too
Step-by-step explanation:
ARGH
Answer:
and ![\sec \theta = -\dfrac{13}{12}](https://tex.z-dn.net/?f=%5Csec%20%5Ctheta%20%3D%20-%5Cdfrac%7B13%7D%7B12%7D)
Step-by-step explanation:
Assume that the terminal side of thetaθ passes through the point (−12,5).
In ordered pair (-12,5), x-intercept is negative and y-intercept is positive. It means the point lies in 2nd quadrant.
Using Pythagoras theorem:
![hypotenuse^2=perpendicular^2+base^2](https://tex.z-dn.net/?f=hypotenuse%5E2%3Dperpendicular%5E2%2Bbase%5E2)
![hypotenuse^2=(5)^2+(12)^2](https://tex.z-dn.net/?f=hypotenuse%5E2%3D%285%29%5E2%2B%2812%29%5E2)
![hypotenuse^2=25+144](https://tex.z-dn.net/?f=hypotenuse%5E2%3D25%2B144)
![hypotenuse^2=169](https://tex.z-dn.net/?f=hypotenuse%5E2%3D169)
Taking square root on both sides.
![hypotenuse=13](https://tex.z-dn.net/?f=hypotenuse%3D13)
In a right angled triangle
![\sin \theta = \dfrac{opposite}{hypotenuse}](https://tex.z-dn.net/?f=%5Csin%20%5Ctheta%20%3D%20%5Cdfrac%7Bopposite%7D%7Bhypotenuse%7D)
![\sin \theta = \dfrac{5}{13}](https://tex.z-dn.net/?f=%5Csin%20%5Ctheta%20%3D%20%5Cdfrac%7B5%7D%7B13%7D)
![\sec \theta = \dfrac{hypotenuse}{adjacent}](https://tex.z-dn.net/?f=%5Csec%20%5Ctheta%20%3D%20%5Cdfrac%7Bhypotenuse%7D%7Badjacent%7D)
![\sec \theta = \dfrac{13}{12}](https://tex.z-dn.net/?f=%5Csec%20%5Ctheta%20%3D%20%5Cdfrac%7B13%7D%7B12%7D)
In second quadrant only sine and cosecant are positive.
and ![\sec \theta = -\dfrac{13}{12}](https://tex.z-dn.net/?f=%5Csec%20%5Ctheta%20%3D%20-%5Cdfrac%7B13%7D%7B12%7D)