Answer:
665 g
Explanation:
Let's consider the following thermochemical equation.
2 C₄H₁₀(g) + 13 O₂(g) → 8 CO₂(g) + 10 H₂O(l), ΔH°rxn= –5,314 kJ/mol
According to this equation, 5,314 kJ are released per 8 moles of CO₂. The moles produced when 1.00 × 10⁴ kJ are released are:
-1.00 × 10⁴ kJ × (8 mol CO₂/-5,314 kJ) = 15.1 mol CO₂
The molar mass of CO₂ is 44.01 g/mol. The mass corresponding to 15.1 moles is:
15.1 mol × 44.01 g/mol = 665 g
20 mol of NH, can be produce from 30 mol o H2
<span>It is the valence orbit that controls the electrical properties of the atom. The valence electron is referred to as a "free electron.' Valence electrons have the highest energy of all electrons in an atom; they are also the most reactive, meaning they are usually the electrons involved in bonding. When silicon atoms combine to form a solid, they arrange themselves into an orderly pattern called a crystal.</span>
When two oxygen atoms get close to each other, the attractions from the nucleus of both atoms attract the outer electrons.
(BRAINLIEST PLEASE!!!)
The balanced chemical equation is,
2Mg+2HCl→2MgCl+H2↑