Zn(s) + 2HCl(aq) = ZnCl₂(aq) + H₂(g)
zinc + hydrochloric acid = zinc chloride + hydrogen
Answer:
Explanation:
Assume we have 100g of this substance. That means we would have 20.24g of Cl and 79.76g of Al. Now we can find how many moles of each we have:
= 2.25 mol of chlorine
= 0.750 mol of Al.
To form a integer ratio, do 2.25/0.75 = 2.99999 ~= 3.
So the ratio is essentially Al : Cl => 1 : 3. To the compound is possibly
.
However, it says it has a molar mass of 266.64 g/mol, and since AlCl3 has a molar mass of 133.32, it must be
.
Actually this molecule isn't exactly AlCl3 (which is ionic). Al2Cl6 forms a banana bond where Cl acts as a hapto-2 ligand. But that's a bit advanced. All you need to know is X = Al2Cl6
<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
A non-polar covalent bond is defined as the bond which is formed between the atoms having no difference in electronegativity values. For Example:
etc..
In this bond, the electrons are shared equally and
value is equal to 0.
Hence, the correct answer is Option D.
Galvanizing protects from rust in a number of ways: It forms a barrier that prevents corrosive substances from reaching the underlying steel or iron. The zinc serves as a sacrificial anode so that even if the coating is scratched, the exposed steel will still be protected by the remaining zinc.
Answer:
ΔH°rxn = -47 kJ
Explanation:
Using Hess´s law for the reaction:
3 Fe2O3(s) + CO(g) → 2 Fe3O4(s) + CO2(g) ,
the ΔH°rxn will be given by the expression:
ΔH°rxn kJ = 2ΔHºf(Fe3O4) + ΔHºf(CO2) - ( 3ΔHºf(Fe2O3) + ΔHºf(CO) )
= 2(-1118) + (-394) - ( 3( -824 ) + ( -111 ) )
= - 47 kJ