As per the rule, oxidation number of alkaline earth metals in their compounds is +2. Oxidation number of oxygen in it's compounds is -2(except peroxides) and the sum of oxidation numbers of all the elements of a neutral compound is zero.
7.4x10^23 = molecules of silver nitrate sample
6.022x10^23 number of molecules per mole (Avogadro's number)
Divide molecules of AgNO3 by # of molecules per mol
7.4/6.022 = 1.229 mols AgNO3 (Sig Figs would put this at 1.3)
(I leave off the x10^23 because they both will divide out)
Use your periodic table to find the molar weight of silver nitrate.
107.868(Ag) + 14(N) + 3(16[O]) = 169.868g/mol AgNO3
Now multiply your moles of AgNO3 with your molar weight of AgNO3
1.229mol x 169.868g/mol = 208.767g AgNO3
<u>Answer:</u>
<u>For a:</u> The wavelength of light is 
<u>For b:</u> The light is getting absorbed
<u>Explanation:</u>
To calculate the wavelength of light, we use Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 
= Higher energy level = 7
= Lower energy level = 3
Putting the values in above equation, we get:

Hence, the wavelength of light is 
There are two ways in which electrons can transition between energy levels:
- <u>Absorption spectra:</u> This type of spectra is seen when an electron jumps from lower energy level to higher energy level. In this process, energy is absorbed.
- <u>Emission spectra:</u> This type of spectra is seen when an electron jumps from higher energy level to lower energy level. In this process, energy is released in the form of photons.
As, the electron jumps from lower energy level to higher energy level. The wavelength is getting absorbed.
Answer:
Cold-blood animals are the animals that are not capable of regulating their body temperature,Cold blood animals included reptiles,fishes,amphibians,insects and other invertebrates.
Reactives
-> Products
CuO
and water are products.
I
found this reaction which has CuO and water as products: decomposition of
Cu(OH)2.
Cu(OH)2
-> CuO + H2O
Stoichiometry calculus involve the mole
proportions you can see in the reaction: When 1 mole of Cu(OH)2 reacts, 1 mole of
CuO and 1 mole of H2O are formed.
Considering
the molar masses:
Cu(OH)2
= 83.56 g/mol
CuO
= 79.545 g/mol
H2O
= 18.015 g/mol
Then:
When 83.56 g of Cu(OH)2 react, 79.545 g of CuO and 18.015 g H2O are formed.
You
should use that numbers in the rule of three:
79.545
g CuO __________18.015 g water
3.327
g CuO__________ x =3.327*18.015 /79.545 g water
x= 0.7535 g water