Answer:
A
Explanation:
its a because that is the first thing you do
Answer:
Force of attraction = 35.96
N
Explanation:
Given: charge on anion = -2
Charge on cation = +2
Distance = 1 nm =
m
To calculate: Force of attraction.
Solution: The force of attraction is calculated by using equation,
---(1)
where, q represents the charge and the subscripts 1 and 2 represents cation and anion.
k = 
F = force of attraction
r = distance between ions.
Substituting all the values in the equation (1) the equation becomes

Force of attraction = 35.96
N
Answer:
Metals on the left of the Periodic Table.
Non-Metals on the top-right, plus Hydrogen.
Answer:
V CH4(g) = 190.6 L
Explanation:
assuming ideal gas:
∴ STP: T =298 K and P = 1 atm
∴ R = 0.082 atm.L/K.mol
∴ moles (n) = 7.80 mol CH4(g)
∴ Volume CH4(g) = ?
⇒ V = RTn/P
⇒ V CH4(g) = ((0.082 atm.L/K.mol)×(298 K)×(7.80 mol)) / (1 atm)
⇒ V CH4(g) = 190.6 L
The mass number of aluminium hydroxide is 78 thus, the number of moles in 0.745 g is:
no. of moles= mass/ RFM
= 0.745/78
=0.00955moles
Therefore the 0.00955 moles should be in the 35.18 ml
therefore 1000ml of the solution will have:
(0.00955ml×1000ml)/35.18
=0.2715moles
The solution will be 0.27M hydrochloric acid