Simplifying h(x) gives
h(x) = (x² - 3x - 4) / (x + 2)
h(x) = ((x² + 4x + 4) - 4x - 4 - 3x - 4) / (x + 2)
h(x) = ((x + 2)² - 7x - 8) / (x + 2)
h(x) = ((x + 2)² - 7 (x + 2) - 14 - 8) / (x + 2)
h(x) = ((x + 2)² - 7 (x + 2) - 22) / (x + 2)
h(x) = (x + 2) - 7 - 22/(x + 2)
h(x) = x - 5 - 22/(x + 2)
An oblique asymptote of h(x) is a linear function p(x) = ax + b such that

In the simplified form of h(x), taking the limit as x gets arbitrarily large, we obviously have -22/(x + 2) converging to 0, while x - 5 approaches either +∞ or -∞. If we let p(x) = x - 5, however, we do have h(x) - p(x) approaching 0. So the oblique asymptote is the line y = x - 5.
Answer:
4 Blue chips
6 Yellow chips
10 Red chips
Imagine 20% as 2 of 10. We have 20 chips, and that's double of that. So if we have 2/10... we will have 4/20
Same with the yellow chips. Imagine 30% as 3 of 10, again double that... 6/20.
It doesn't directly say the percent of design a computer representation but we can infer that if we have 20% and 30%... that makes 50%, there is only 100 in a percent, so that means there is 50% left! We repeat the process where we envision 50% as 5 of 10, double that. Now we have 10 of 20, 50%!
The first answer of the missing blank is 4/5.
The second answer of the missing blank is 2.
The third answer of the missing blank is 25.
*For all of these solutions, I will be using the common rules for logarithms.*
Solution for the first question:
Log9^4/5 must equal log9^4-log9^5, or it could also equal the more proper version, which is simplified: 2log9^2-log9^5.
Solution for the second question:
Log3^22 must equal log3^11+log3^2, if you break it down.
Solution for the third question:
Log9^25 must equal 2log9^5 because it will be like this when simplifying it:
log9^25=2log9^5
log9^5²=2log9^5
2log9^5=2log9^5
These are all of the step-by-step procedures for all three of these given questions. Anyways, I hope that this helped you!
8 x2 is 16; we have a negative sign, so that makes our answer -16
Answer: 1/3
Step-by-step explanation: