Answer:
(a) Probability that a triplet is decoded incorrectly by the receiving computer. = 0.010
(b)
(1 – p) = 0.010
(c)
E(x) = 25000 x 0.010
= 259.2
Explanation has given below.
Step-by-step explanation:
Solution:
(a) Probability that a triplet is decoded.
2 out of three
P = 0.94, n = 3
m= no of correct bits
m bit (3, 0.94)
At p(m≤1) = B (1; 3, 0.94)
= 0.010
(b) Using your answer to part (a),
(1 – p) = 0.010
Error for 1 bit transmission error.
(c) How does your answer to part (a) change if each bit is repeated five times (instead of three?
P( m ≤ 2 )
L = Bit (5, 0.94)
= B (2; 5, 0.94)
= 0.002
(d) Imagine a 25 kilobit message (i.e., one requiring 25,000 bits to send). What is the expected number of errors if there is no bit repetition implemented? If each bit is repeated three times?
Given:
h = 25000
Bits are switched during transmission between two computers = 6% = 0.06
m = Bit (25000, 0.06)
E(m) = np
= 25000 x 0.06
= 1500
m = Bit (25000, 0.01)
E(m) = 25000 x 0.010
= 259.2
Answer:
-35 + 10m
Step-by-step explanation:
Step 1. Distribute the -5(Do -5 times 7 and -5 times -2m)
-35 + 10 m
That is it.
Answer:
The correct set of hypotheses is
: d=80 degrees
: d>80 degrees
Step-by-step explanation:
The weatherman claims that the average temperature during July in Chattanooga is 80 degrees or less. To test this claim, following hypotheses need to be taken:
Let d be the the average temperature during July in Chattanooga, then
: d=80 degrees
: d>80 degrees
It’s a slim chance considering there’s a lot of cards in one dec