Physical exercise preserves bone mass. Measurements of bone biomarkers may reflect the events in bone during exercise. Fifteen healthy, well-trained individuals (7 men and 8 women) performed a running test for 21 min until exhaustion. Venous blood samples were drawn before and 30 min after the exercise to measure the levels of osteocalcin, the carboxyterminal propeptide of type I procollagen (PICP) and the carboxyterminal cross-linked telopeptide of type I collagen (ICTP). After exercise, the women had a marked increase in serum osteocalcin concentrations (from 7.5±5.0 μg/1 to 11.5±3.0 μg/1), whereas the level was unaffected in the men (from 14.5±3.0 μg/1 to 13.5±4.6 μg/l). In the men there was a marked increase in PICP (from 240±47 μg/1 to 268±56 μg/1) that was not seen in the women (from 244±70 μg/1 to 253±60 μg/1). In neither group did ICTP levels change. In conclusion, significant responses were seen in PICP and osteocalcin during exercise, indicating that such measurements may be valuable for the further delineation of the effects of physical activity on bone. Furthermore, the different responses in men and women point to interesting areas for future studies.
Answer:
An inherited life-threatening disorder that damages the lungs and digestive system.
Cystic fibrosis affects the cells that produce mucus, sweat and digestive juices. It causes these fluids to become thick and sticky. They then plug up tubes, ducts and passageways.
Hope this helps u.....
Follow me..... Xd
Explanation:
The question is incomplete. The complete question is:
Question: What is the expected percent change in the DNA content of a typical eukaryotic cell as it progresses through the cell cycle from the start of the G1 phase to the end of the G2 phase
a. -100%
b. -50%
c. +50%
d. +100%
Answer:
d. +100%
Explanation:
S phase comes between G1 and G2 phases of the interphase of a cell cycle. S phase of interphase includes replication of DNA. The process of DNA replication doubles the amount of DNA present in the cell. The newly synthesized DNA is accommodated in the sister chromatids of chromosomes. Therefore, a cell with 2C DNA in the G1 phase would have 4C DNA at the end of the G2 phase. So, there is a +100% increase in the DNA content of a cell as it proceeds from G1 to the end of the G2 phase.