The partial pressure is the amount of linguistic compound there is which makes the lagitude of the element 64.663
Answer:
2.2 °C/m
Explanation:
It seems the question is incomplete. However, this problem has been found in a web search, with values as follow:
" A certain substance X melts at a temperature of -9.9 °C. But if a 350 g sample of X is prepared with 31.8 g of urea (CH₄N₂O) dissolved in it, the sample is found to have a melting point of -13.2°C instead. Calculate the molal freezing point depression constant of X. Round your answer to 2 significant digits. "
So we use the formula for <em>freezing point depression</em>:
In this case, ΔTf = 13.2 - 9.9 = 3.3°C
m is the molality (moles solute/kg solvent)
- 350 g X ⇒ 350/1000 = 0.35 kg X
- 31.8 g Urea ÷ 60 g/mol = 0.53 mol Urea
Molality = 0.53 / 0.35 = 1.51 m
So now we have all the required data to <u>solve for Kf</u>:
Answer:
density equals weigt divided by volume
Explanation:

I think the best answer that will describe chemical change is the first option. During a chemical change, b<span>oth the identity and the properties of a substance change because new substances are being formed by a chemical reaction. An example is rusting of steel</span>
<h2>
Answer:</h2>
Valance electrons can be determined by <u>Group</u> on the periodic table
<h2>
Explanation:</h2>
- Valence electrons are the electrons present in the outermost shell of an atom. We can determine the total number of valence electrons present in an atom by checking at its Group in which it is placed in the periodic table. For example, atoms in Groups 1 the number of valence electron is one and for group 2 the number of valence electrons is 2.
- The groups have number of valance electrons as follow:
Group 1 - 1 valence electron.
Group 2 - 2 valance electrons.
Group 13 - 3 valence electrons.
Group 14 - 4 valance electrons.
Group 15 - 5 valence electrons.
Group 16 - 6 valence electrons.
Group 17 - 7 valence electrons.
Group 18 - 8 valence electrons.
Result: No of valence electron can be determined by the group no. of the element.