Answer:
a = -7.29 m / s²
Explanation:
For this exercise we must use Newton's second law,
F -W = m a
Force is electrical force
F = k q₁ q₂ / r²
k q₁ q₂ / r² -mg = m a
indicate that the charge of the two spheres is equal
q₁ = q₂ = q
a = (k q² / r² - m g) / m
a = k q² / m r² - g
Let's reduce the magnitudes to the SI system
m = 0.19 g (1kg / 1000 g) = 1.9 10⁻⁴ kg
q1 = q2 = q = -23.0 nC (1C / 10⁹ nC) = -23.0 10⁻⁹ C
r = 10.0 cm (1m / 100cm) = 0.1000 m
let's calculate
a = 9 10⁹ (23.0 10⁻⁹)² / (0.1000² 1.9 10⁻⁴) - 9.8
a = -7.29 m / s²
The negative sign indicates that the direction of this acceleration is downward
It is 92.96 millions miles away
Hope that helped :)
f' = frequency observed by the police car after sound reflected from the vehicle and comes back to police car = 1250 Hz
f = frequency emitted by the police car = 1200 Hz
V = speed of sound = 340 m/s
v = speed of vehicle = ?
frequency observed by the police car is given as
f' = f (V + v)/(V - v)
inserting the values in the above equation
1250 = 1200 (340 + v)/(340 - v)
v = 6.9 m/s
Answer:
Vacuum. A sound vacuum was created, i believe.
Answer:
change in height is 1.664 mm
Explanation:
Given data
drops = 3.00 mm
diameter = 5.00 cm = 0.05 mm
decrease = 350 cm^3
temperature = 95°C to 44.0°C
to find out
the decrease in millimeters in level
solution
we will calculate here change in volume so we can find how much level is decrease
change in volume = β v change in temp ...............1
here change in volume = area× height
so =
/4 × d² h
so we can say change in volume =
/4 × d² × change in height .......2
so from equation 1 and 2 we calculate change in height
( β(w) -β(g) )× v× change in temp =
/4 × d² × change in height
change in height = 4 × ( β(w) -β(g) ) v× change in temp /
/4 × d²
put all value here
change in height = 4 × ( 210 - 27 )(350 )
× (95-44) /
/4 × 0.05²
change in height is 1.664 mm