Answer:
m = 8
Explanation:
A telescope is a device that allows us to see objects that were very far from us, it is built by the combination of two lenses, the one with the lowest focal length near the eye and that is the one or the one with the greatest focal length, the most eye-flounder . The magnification of the telescope is
m = - f₀ /
Where f₀ is the focal length of the lens and f_{e} is the false distance of the eyepiece.
It is this problem that gives us the diopter of each lens, these are related to the focal length in meters
D = 1 / f
Let's find the focal length
f₁ = 1 / D₁
f₁ = 1 / 1.16
f₁ = 0.862 m
f₂ = 1 / 9.37
f₂ = 0.1067 m
Therefore, the lens with f₂ is the eyepiece and the slow one with the
distance focal f₁ is the objective.
Let's calculate
m = - f₂ / f₁
m = - 0.862 / 0.1067
m = 8
Out of the solar system parts, we can see the sun, a few planets, some meteorites and comets.
Rest all is not visible through naked eyes
The current is defined as the ratio between the charge Q flowing through a certain point of a wire and the time interval,

:

First we need to find the net charge flowing at a certain point of the wire in one second,

. Using I=0.92 A and re-arranging the previous equation, we find

Now we know that each electron carries a charge of

, so if we divide the charge Q flowing in the wire by the charge of one electron, we find the number of electron flowing in one second:
Answer:
research topic and research question (hypothesis)
Explanation:
143m/s if you just perhaps by what you know you'll figure it out