We need to be careful here.
The calculation of the gravitational force between two objects
refers to the distance between their centers.
The minimum possible distance between the Earth's and moon's
centers is the sum of their radii (radiuses).
Earth's radius . . . . . 6,360 km = 6.36 x 10⁶ meters
Moon's radius . . . . . 1,738 km = 1.738 x 10⁶ meters
Sum of their radii = 8.098 x 10⁶ meters
Also:
Earth's mass . . . . . 5.972 x 10²⁴ kg
Moon's mass . . . . . 7.348 x 10²² kg
<span>
and now we're ready to go !
Gravitational force =
G M₁ M₂ / R²
= (6.67 x 10⁻¹¹ N-m²/kg²)(</span><span>5.972 x 10²⁴ kg)(7.348 x 10²² kg)/</span>(8.098 x 10⁶ m)²
= (6.67 · 5.972 · 7.348 / 8.098²) · (10²³) Newtons
= (I get ...) 4.463 x 10²³ Newtons
That's almost exactly 10²³ pounds
= 50,153,000,000,000,000,000 tons.
Those are big numbers.
All I can say is: I wouldn't exactly call that "resting" on the surface".
The work done is the same as the amount of energy increase. The formula for kinetic energy is 122
1
2
m
v
2
.
The initial KE of the car is 12(1000)×202=200,000
1
2
(
1000
)
×
20
2
=
200
,
000
joules.
The final KE of the car is 12(1000)×302=450,000
1
2
(
1000
)
×
30
2
=
450
,
000
joules.
The difference between these is the amount of work done: 450,000−200,000=250,000
450
,
000
−
200
,
000
=
250
,
000
joules.
14.2K viewsView upvotes
20
3
Answer:
The Answer Is A,C,D
Explanation:
The gravitational pull from the moon make bigger waves'
There would be no moon for eclipses
There would be more sun and no moon
The answer in the first space provided is realistic whereas
the second space provided is fantastic. The correct answer would be letter B.
In realistic, it has many views in which the frame is the
window on the world whereas fantastic depicts imagination or remotes from
reality.