Answer:
Explanation:
If i'm not wrong and late it might be F
Answer:
a = ω^2 A formula for max acceleration (ignoring sign)
V = ω A formula for max velocity
V^2 = ω^2 A^2 = a A from first equation
E = 1/2 M V^2 = 1/2 * 2.98 * 3.55 * .0805 = .426 J
(kg * m/sec^2 * m = kg m^2 / sec^2 = Joule
To answer this question, first we take note that the maximum height that can be reached by an object thrown straight up at a certain speed is calculated through the equation,
Hmax = v²sin²θ/2g
where v is the velocity, θ is the angle (in this case, 90°) and g is the gravitational constant. Since all are known except for v, we can then solve for v whichi s the initial velocity of the projectile.
Once we have the value of v, we multiply this by the total time traveled by the projectile to solve for the value of the range (that is the total horizontal distance).
Answer:
Well first for criteria think what would the rover need in order to sustain itself on Venus. And for constraints think of anything that could possibly affect the rover( ex: gasses, active volcanoes)
Explanation:
Criteria: Make the rover self sustainable, and allow the rover to have a mission on Venus( ex: collect rock samples)
Constraints, as I mentioned above gasses, and active volcanoes.
I hope this helps! :)
The distance it traveled and the time that it took to travel that distance