Answer:
see explaination
Explanation:
We are given the (R)-3-bromo-2,3-dimethylpentane and asking to draw the curved arrow which is the showing the mechanism for first-order substitution and first-order elimination reactions. We know the formation of carbocation is the rate determining step in the first-order substitution and first-order elimination reactions.
So in the (R)-3-bromo-2,3-dimethylpentane there is –Br gets removed and formed the tertiary carbocation which is more stable, so the curved arrows in Box 1 to depict the flow of electrons and intermediate in Box 2.
Check attachment
Answer:
24.03 J/mol.ºC
Explanation:
For a calorimeter, the heat lost must be equal to the heat gained from water plus the heat gained from calorimeter, which has the same initial temperature as the water.
-Qal = Qw + Qc (minus signal represents that the heat is lost)
-mal*Cal*ΔTal = mw*Cw*ΔTw + Cc*ΔTc
Where m is the mass, C is the specific heat, ΔT is the temperature variation, al is from aluminum. w from water and c from the calorimeter. Cw = 4.186 J/gºC
-25.5*Cal*(22.7 - 100) = 99.0*4.186*(22.7 - 18.6) + 14.2*(22.7 - 18.6)
1971.15Cal = 1699.10 + 58.22
1971.15Cal = 1757.32
Cal = 0.89 J/g.ºC
The molar mass of Al is 27 g/mol
Cal = 0.89 J/g.ºC * 27 g/mol
Cal = 24.03 J/mol.ºC
A(A compound that increases the hydroxide ions (OH−) when it is dissolved in a solution)-alkaline
B(A compound that increases hydrogen ions (H+) when it is dissolved in a solution)-acid
C(An atom or molecule that has a positive or negative charge)-ion
D(<span>A value from 0 to 14 that is used to specify how acidic or basic a compound is when it is dissolved in water)</span>-pH
Answer:
B.) 117 g
Explanation:
(Step 1)
To find the mass, you need to first find the moles of NaCl using the molarity ratio.
Molarity = moles / volume (L)
2.00 M = moles / 1.0 L
2.00 = moles
(Step 2)
Now that you know the moles, you can convert it to grams using the molar mass.
Molar Mass (NaCl): 22.990 g/mol + 35.453 g/mol
Molar Mass (NaCl): 58.443 g/mol
2.00 moles NaCl 58.443 g
--------------------------- x ----------------- = 117 g NaCl
1 mole