Answer:
The forward reaction is occurring at a faster rate than the reverse reaction.
Explanation:
Reaction quotient (Q) of the given reaction is -
![Q=\frac{[NO]^{2}}{[N_{2}][O_{2}]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D)
where [NO],
and
represents concentrations of respective species at a certain time.
Here
= 0.80 M,
= 0.050 M and [NO] = 0.10 M
So, 
Hence 
It means that forward reaction is faster than reverse reaction at that point. Because then only concentration of NO is higher than concentrations of
and
which makes Q higher than K.
Well physical would be if you have Clay and you molded into a new shape or if you put butter on your toes and it melts or water evaporating from the surface of the ocean chemical changes would be milk going sour jewellery tarnishing which means turning into a different color or rust bread putting it in the oven and turning it into toes or rust forming on the nail that is left outside
Based on our knowledge of strong and weak acids, we can confirm that the Ka value for acetic acid will be relatively low since it is a weak acid.
Acids can be strong or weak. This is determined by its <u><em>tendency to break apart into ions or stay together to form molecules.</em></u> Although somewhat counter-intuitive, strong acids are those that are most likely to break apart and therefore contain a <em><u>high number of </u></em><em><u>ions </u></em><em><u>within their solutions</u></em>.
Weak acids, on the other hand, are those that<em><u> tend to stay together in the form of </u></em><em><u>molecules </u></em><em><u>and therefore possess very </u></em><em><u>low ion counts </u></em><em><u>in their solutions.</u></em> The acid dissociation constant, Kₐ, is used to measure whether an acid is weak or strong and how much so. In the case of Acetic acid, the ka measurement will offer a low value, indicating a weak acid.
To learn more visit:
brainly.com/question/4131966?referrer=searchResults