Answer:
Na⁺ tends to interact with the hardest base, which is water. Ag⁺ tends to interact with the softest (hardless) base, which is Cl⁻.
Explanation:
The HSAB concept says that hard acids are small ions with low electronegativity, while hard bases are electron donating groups with high electronegativity and low polarizability. The HSAB concept also says that hard acids will tend to react with hard bases. The opposite is valid for soft acids and soft bases.
Na⁺ is a hard acid
Ag ⁺ is a soft acid
Cl⁻ is a hard base
H₂O is a harder base than Cl⁻
Therefore, when in water, the Na⁺ tends to react with water, because it is a harder base than Cl⁻. However, as Ag⁺ is a soft acid, it will tend to stay with the less hard base, which is Cl⁻.
Answer:

Explanation:
![\rm MX(s) $\, \rightleftharpoons \,$ M$^{+}$(aq) + $^{-}$(aq); $K_{\text{sp}}$ = [M$^{+}$][X$^{-}$]\\\\\text{$K_{\text{sp}}$ gives us information on}\\\\\boxed{\textbf{ the equilibrium between the solid and its ions in solution}}](https://tex.z-dn.net/?f=%5Crm%20MX%28s%29%20%24%5C%2C%20%5Crightleftharpoons%20%5C%2C%24%20M%24%5E%7B%2B%7D%24%28aq%29%20%2B%20%24%5E%7B-%7D%24%28aq%29%3B%20%24K_%7B%5Ctext%7Bsp%7D%7D%24%20%3D%20%5BM%24%5E%7B%2B%7D%24%5D%5BX%24%5E%7B-%7D%24%5D%5C%5C%5C%5C%5Ctext%7B%24K_%7B%5Ctext%7Bsp%7D%7D%24%20gives%20us%20information%20on%7D%5C%5C%5C%5C%5Cboxed%7B%5Ctextbf%7B%20the%20equilibrium%20between%20the%20solid%20and%20its%20ions%20in%20solution%7D%7D)
It tells us nothing about the amount of precipitate that will form or the temperature at which the equilibrium occurs.
<span>All metals have similar properties BUT, there can be wide variations in melting point, boiling point, density, electrical conductivity and physical strength.<span>To explain the physical properties of metals like iron or sodium we need a more sophisticated picture than a simple particle model of atoms all lined up in close packed rows and layers, though this picture is correctly described as another example of a giant lattice held together by metallic bonding.</span><span>A giant metallic lattice – the <span>crystal lattice of metals consists of ions (NOT atoms) </span>surrounded by a 'sea of electrons' that form the giant lattice (2D diagram above right).</span><span>The outer electrons (–) from the original metal atoms are free to move around between the positive metal ions formed (+).</span><span>These 'free' or 'delocalised' electrons from the outer shell of the metal atoms are the 'electronic glue' holding the particles together.</span><span>There is a strong electrical force of attraction between these <span>free electrons </span>(mobile electrons or 'sea' of delocalised electrons)<span> (–)</span> and the 'immobile' positive metal ions (+) that form the giant lattice and this is the metallic bond. The attractive force acts in all directions.</span><span>Metallic bonding is not directional like covalent bonding, it is like ionic bonding in the sense that the force of attraction between the positive metal ions and the mobile electrons acts in every direction about the fixed (immobile) metal ions of the metal crystal lattice, but in ionic lattices none of the ions are mobile. a big difference between a metal bond and an ionic bond.</span><span>Metals can become weakened when repeatedly stressed and strained.<span><span>This can lead to faults developing in the metal structure called 'metal fatigue' or 'stress fractures'.</span><span>If the metal fatigue is significant it can lead to the collapse of a metal structure.</span></span></span></span>
Answer:
A theory of chemical combination, first stated by John Dalton in 1803. It involves the following postulates: (1) Elements consist of indivisible small particles (atoms). (2) All atoms of the same element are identical; different elements have different types of atom. (3) Atoms can neither be created nor destroyed. Based on all his observations, Dalton proposed his model of an atom. It is often referred to as the billiard ball model. He defined an atom to be a ball-like structure, as the concepts of atomic nucleus and electrons were unknown at the time.
John Dalton developed a crude method for measuring the masses of the elements in a compound. His law of multiple proportions states that when two elements form more than one compound, masses of one element that combine with a fixed mass of the other are in a ratio of small whole numbers.
Explanation: Sup. Hope dis helps u bro
Answer:
1.403x10²⁴ molecules
Explanation:
In order to calculate how many molecules of CO₂ are there in 102.5 g of the compound, we first<u> convert grams to moles</u> using its <em>molar mass</em>:
- 102.5 g ÷ 44 g/mol = 2.330 mol CO₂
Now we <u>convert moles into molecules </u>using <em>Avogadro's number</em>:
- 2.330 mol * 6.023x10²³ molecules/mol = 1.403x10²⁴ molecules