Everything wrong with 2020 is WW3 that dump trump decided to start , Australia fires , Kobe passed away than Pop smoke :( corona virus got really big , quarantine started , riots & protesting started because of that dumb who’re racist cop ! Hope this helps
Answer:
C. Provides lubrication to parts
Explanation:
Flywheel :
Flywheel is a device which stored the mechanical energy.This energy can be use when more energy required during any operation.Due to high moment of inertia of the flywheel it resist the change in the speed .The flywheel is attached to the crank shaft at the rear side of the engine.
The flywheel perform following function:
1. It connects the crankshaft and the transmission system.
2.It makes the engine operation smooth.
3.It contains gear and other parts of the engine.
But it can not provide lubrication.
C. Provides lubrication to parts
Answer:
a. 2x/3
b. 8
Explanation:
fundamental period can be defined to mean that at after every period of 2π radians or 360° the value of graph is repeated. For such functions the fundamental period is the period after which they repeat themselves.
It van also be looked as The fundamental period of cos(θ) is 2π. That is (for example) cos(0) to cos(2π) represents one full period.
Please see attachment for the step by step solution.
Answer:
Technician A is wrong
Technician B is right
Explanation:
voltage drop of 0.8 volts on the starter ground circuit is not within specifications. Voltage drop should be within the range of 0.2 V to 0.6 V but not more than that.
A spun bearing can seize itself around the crankshaft journal causing it not to move. As the car ignition system is turned on, the stater may draw high current in order to counter this seizure.
Answer:
Only Technician B is right.
Explanation:
The cylindrical braking system for a car works through the mode of pressure transmission, that is, the pressure applied to the brake pedals, is transmitted to the brake pad through the cylindrical piston.
Pressure applied on the pedal, P(pedal) = P(pad)
And the Pressure is the applied force/area for either pad or pedal. That is, P(pad) = Force(pad)/A(pad) & P(pedal) = F(pedal)/A(pedal)
If the area of piston increases, A(pad) increases and the P(pad) drops, Meaning, the pressure transmitted to the pad reduces. And for most cars, there's a pressure limit for the braking system to work.
If the A(pad) increases, P(pad) decreases and the braking force applied has to increase, to counter balance the dropping pressure and raise it.
This whole setup does not depend on the length of the braking lines; it only depends on the applied force and cross sectional Area (size) of the piston.