Answer:
V = 0.5 m/s
Explanation:
given data:
width of channel = 4 m
depth of channel = 2 m
mass flow rate = 4000 kg/s = 4 m3/s
we know that mass flow rate is given as
Putting all the value to get the velocity of the flow
V = 0.5 m/s
Answer:
baking soda and vinegar dish soap
Explanation:
it will create a bubbles and let it sit for 3 hours and it will go away
Answer:
cpct gvxjjxjhdfjokjdzfjiyddzzsjhxf
Answer:
a) Tբ = 151.8°C
b) ΔV = - 0.194 m³
c) The T-V diagram is sketched in the image attached.
Explanation:
Using steam tables,
At the given pressure of 0.5 MPa, the saturation temperature is the final temperature.
Right from the steam tables (A-5) with a little interpolation, Tբ = 151.793°C
b) The volume change
Using data from A-5 and A-6 of the steam tables,
The volume change will be calculated from the mass (0.58 kg), the initial specific volume (αᵢ) and the final specific volume
(αբ) (which is calculated from the final quality and the consituents of the specific volumes).
ΔV = m(αբ - αᵢ)
αբ = αₗ + q(αₗᵥ) = αₗ + q (αᵥ - αₗ)
q = 0.5, αₗ = 0.00109 m³/kg, αᵥ = 0.3748 m³/kg
αբ = 0.00109 + 0.5(0.3748 - 0.00109)
αբ = 0.187945 m³/kg
αᵢ = 0.5226 m³/kg
ΔV = 0.58 (0.187945 - 0.5226) = - 0.194 m³
c) The T-V diagram is sketched in the image attached
Answer:
number of pulses produced = 162 pulses
Explanation:
give data
radius = 50 mm
encoder produces = 256 pulses per revolution
linear displacement = 200 mm
solution
first we consider here roll shaft encoder on the flat surface without any slipping
we get here now circumference that is
circumference = 2 π r .........1
circumference = 2 × π × 50
circumference = 314.16 mm
so now we get number of pulses produced
number of pulses produced = × No of pulses per revolution .................2
number of pulses produced = × 256
number of pulses produced = 162 pulses