Input is domain and output is co-domain.
An expression is said to be a function if for every input, there is only one output. In table B, for every input, you get different outputs. Therefore, table B is a function.
Answer:
![\dfrac{\sqrt[12]{55296}}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B12%5D%7B55296%7D%7D%7B2%7D)
Step-by-step explanation:
Rationalize the denominator, then use a common root for the numerator.
![\dfrac{\sqrt[4]{6}}{\sqrt[3]{2}}=\dfrac{(2\cdot 3)^{\frac{1}{4}}}{2^{\frac{1}{3}}}\\\\=\dfrac{(2\cdot 3)^{\frac{1}{4}}}{2^{\frac{1}{3}}}\cdot\dfrac{2^{\frac{2}{3}}}{2^{\frac{2}{3}}}=\dfrac{2^{\frac{1}{4}+\frac{2}{3}}3^{\frac{1}{4}}}{2}\\\\=\dfrac{2^{\frac{11}{12}}3^{\frac{3}{12}}}{2}=\dfrac{\sqrt[12]{2^{11}3^{3}}}{2}\\\\=\dfrac{\sqrt[12]{55296}}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B4%5D%7B6%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%3D%5Cdfrac%7B%282%5Ccdot%203%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%7B2%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%5C%5C%5C%5C%3D%5Cdfrac%7B%282%5Ccdot%203%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%7B2%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%5Ccdot%5Cdfrac%7B2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7B2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%3D%5Cdfrac%7B2%5E%7B%5Cfrac%7B1%7D%7B4%7D%2B%5Cfrac%7B2%7D%7B3%7D%7D3%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%7B2%7D%5C%5C%5C%5C%3D%5Cdfrac%7B2%5E%7B%5Cfrac%7B11%7D%7B12%7D%7D3%5E%7B%5Cfrac%7B3%7D%7B12%7D%7D%7D%7B2%7D%3D%5Cdfrac%7B%5Csqrt%5B12%5D%7B2%5E%7B11%7D3%5E%7B3%7D%7D%7D%7B2%7D%5C%5C%5C%5C%3D%5Cdfrac%7B%5Csqrt%5B12%5D%7B55296%7D%7D%7B2%7D)
Answer:
Step-by-step explanation:
y > (1/3)x + 4 has an infinite number of solutions. Draw a dashed line representing y = (1/3)x + 4 and then pick points at random on either side of this line. For example, pick (1, 6). Substitute 1 for x in y > (1/3)x + 4 and 6 for y. Is the resulting inequality true? Is 6 > (1/3)(1) + 4 true? YES. So we know that (1, 6) is a solution of y > (1/3)x + 4. Because (1, 6) lies ABOVE the line y = (1/3)x + 4, we can conclude that all points abovve this line are solutions.
I hope this helps you
a^6n-3n
a^3n