Answer:
[ 2.67 , 1 ] m
Explanation:
Given:-
- The side lengths of the rods are as follows:
a = 4 m , b = 4 m , c = 5 m
a = Base , b = Perpendicular , c = Hypotenuse
- All rods are made of same material with uniform density. With
Find:-
Find the coordinates of the center of mass of the triangle.
Solution:-
- The center of mass of any triangle is at the intersection of its medians.
- So let’s say we have a triangle with vertices at points (0,0) , (a,0) , and (0,b).
- Median from (0,0) to midpoint (a/2,b/2) of opposite side has equation:
bx−ay=0
- Median from (a,0) to midpoint (0,b/2) of opposite side has equation:
bx+2ay=ab
- Median from (0,b) to midpoint (a/2,0) of opposite side has equation:
2bx+ay=ab
- Solve all three equations simultaneously:
bx−ay=0 , bx = ay
ay + 2ay = ab , 3ay = ab , y = b/3
bx = b/3
x = a / 3
- So the distance from the median to each leg of the triangle is 1/3 length of other leg.
- So the coordinates of the centroid for right angle triangle would be:
[ 2a/3 , b/3 ]
[ 2.67 , 1 ] m
Answer:1 because
Explanation: it’s pointing to the earth and gravity
Pulls things down to earth
Metal
Explanation:
semiconductors are materials which have a conductivity between conductors (generally metals)
Hello!
This is an example of an inelastic collision, where the two objects "stick" to each other after their collision. (The Goalkeeper CATCHES the puck).
We can write out the conservation of momentum formula:
m1vi + m2vi = m1vf + m2vf
Let:
m1 = mass of puck
m2 = mass of the goalkeeper
We know that the initial velocity of the goalkeeper is 0, so:
m1vi + m2(0) = m1vf + m2vf
m1vi = m1vf + m2vf
The final velocities will be the same, so:
m1vi = (m1 + m2)vf
Plug in the given values:
(0.16)(40)/ (0.16 + 120) = vf ≈ 0.0533 m/s
Using the equation for momentum:
p = mv
The object with the LARGER mass will have the greater momentum. Thus, the Goalkeeper has the largest momentum as p = mv; a greater mass correlates to a greater momentum since the velocity is the same between the two objects. The puck would have a momentum of p = (.16)(0.0533) = 0.008528 kgm/s, whereas the goalkeeper would have a momentum of
p = (120)(0.0533) = 6.396 kgm/s.
F= MA
force equals mass time acceleration
250 N = (70 kg ) (A)
250/70 = 3.5 which is about 4 m/s
Hope this helps