1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
I am Lyosha [343]
3 years ago
10

MATHPHYS CAN U HELP ME PLEASE

Physics
1 answer:
ludmilkaskok [199]3 years ago
6 0

Explanation:

(1) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.041 kg) (2090 J/kg/°C) (0°C − (-11°C)) = 942.59 J

The heat added to melt the ice is:

q = mL = (0.041 kg) (3.33×10⁵ J/kg) = 13,653 J

The heat added to warm the water to 100°C is:

q = mCΔT = (0.041 kg) (4186 J/kg/°C) (100°C − 0°C) = 17,162.6 J

The heat added to evaporate the water is:

q = mL = (0.041 kg) (2.26×10⁶ J/kg) = 92,660 J

The heat added to warm the steam to 115°C is:

q = mCΔT = (0.041 kg) (2010 J/kg/°C) (115°C − 100°C) = 1236.15 J

The total heat needed is:

q = 942.59 J + 13,653 J + 17,162.6 J + 92,660 J + 1236.15 J

q = 125,654.34 J

(2) When the first two are mixed:

m C₁ (T₁ − T) + m C₂ (T₂ − T) = 0

C₁ (T₁ − T) + C₂ (T₂ − T) = 0

C₁ (6 − 11) + C₂ (25 − 11) = 0

-5 C₁ + 14 C₂ = 0

C₁ = 2.8 C₂

When the second and third are mixed:

m C₂ (T₂ − T) + m C₃ (T₃ − T) = 0

C₂ (T₂ − T) + C₃ (T₃ − T) = 0

C₂ (25 − 33) + C₃ (37 − 33) = 0

-8 C₂ + 4 C₃ = 0

C₂ = 0.5 C₃

Substituting:

C₁ = 2.8 (0.5 C₃)

C₁ = 1.4 C₃

When the first and third are mixed:

m C₁ (T₁ − T) + m C₃ (T₃ − T) = 0

C₁ (T₁ − T) + C₃ (T₃ − T) = 0

(1.4 C₃) (6 − T) + C₃ (37 − T) = 0

(1.4) (6 − T) + 37 − T = 0

8.4 − 1.4T + 37 − T = 0

2.4T = 45.4

T = 18.9°C

(3) Heat gained by the ice = heat lost by the tea

mL + mCΔT = -mCΔT

m (3.33×10⁵ J/kg) + m (2090 J/kg/°C) (30.8°C − 0°C) = -(0.176 kg) (4186 J/kg/°C) (30.8°C − 32.8°C)

m (397372 J/kg) = 1473.472 J

m = 0.004 kg

m = 4 g

4 grams of ice is melted and warmed to the final temperature, which leaves 128 grams unmelted.

(4) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.028 kg) (2090 J/kg/°C) (0°C − (-67°C)) = 3920.84 J

The heat added to melt the ice is:

q = mL = (0.028 kg) (3.33×10⁵ J/kg) = 9324 J

The heat added to warm the melted ice to T is:

q = mCΔT = (0.028 kg) (4186 J/kg/°C) (T − 0°C) = (117.208 J/°C) T

The heat removed to cool the water to T is:

q = -mCΔT = -(0.505 kg) (4186 J/kg/°C) (T − 27°C)

q = (2113.93 J/°C) (27°C − T) = 57076.11 J − (2113.93 J/°C) T

The heat removed to cool the copper to T is:

q = -mCΔT = -(0.092 kg) (387 J/kg/°C) (T − 27°C)

q = (35.604 J/°C) (27°C − T) = 961.308 J − (35.604 J/°C) T

Therefore:

3920.84 J + 9324 J + (117.208 J/°C) T = 57076.11 J − (2113.93 J/°C) T + 961.308 J − (35.604 J/°C) T

13244.84 J + (117.208 J/°C) T = 58037.418 J − (2149.534 J/°C) T

(2266.742 J/°C) T = 44792.58 J

T = 19.8°C

(5) Kinetic energy of the hammer = heat absorbed by ice

KE = q

½ mv² = mL

½ (0.8 kg) (0.9 m/s)² = m (80 cal/g × 4.186 J/cal × 1000 g/kg)

m = 9.68×10⁻⁷ kg

m = 9.68×10⁻⁴ g

(6) Heat rate = thermal conductivity × area × temperature difference / thickness

q' = kAΔT / t

q' = (1.09 W/m/°C) (4.5 m × 9 m) (10°C − 4°C) / (0.09 m)

q' = 2943 W

After 10.7 hours, the amount of heat transferred is:

q = (2943 J/s) (10.7 h × 3600 s/h)

q = 1.13×10⁸ J

q = 113 MJ

You might be interested in
Law of motion that says for every action there is an equal and opposite
hodyreva [135]

Answer: Newton's third law

Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object.

Explanation:

4 0
3 years ago
Read 2 more answers
Two charges (q1 = 3.8*10-6C, q2 = 3.2*10-6C) are separated by a distance of d = 3.25 m. Consider q1 to be located at the origin.
Sergio039 [100]

Answer:

The distance is 1.69 m.

Explanation:

Given that,

First charge q_{1}= 3.8\times10^{-6}\ C

Second charge q_{2}=3.2\times10^{-6}\ C

Distance = 3.25 m

We need to calculate the distance

Using formula of electric field

E_{1}=E_{2}

\dfrac{kq_{1}}{x^2}=\dfrac{kq_{2}}{(d-x)^2}

\dfrac{q_{1}}{q_{2}}=\dfrac{(x)^2}{(d-x)^2}

\sqrt{\dfrac{q_{1}}{q_{2}}}=\dfrac{x}{d-x}

x=(d-x)\times\sqrt{\dfrac{q_{1}}{q_{2}}}

Put the value into the formula

x=(3.25-x)\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x+x\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}=3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x(1+\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}})=3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x=\dfrac{3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}}{(1+\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}})}

x=1.69\ m

Hence, The distance is 1.69 m.

5 0
3 years ago
An instructor gives a demonstration in which he makes a standing wave on a long thin slinky. The slinky is 6.0 meters long. If y
Naily [24]

The characteristics of standing waves allows to find the result for the speed of the wave is:

  • The speed wave is:  v = 10 m / s

The wave is a way of transmitting energy without mass displacement, , in the attachment we can see a diagram of the standing wave.

Each cycle corresponds to half a wavelength,  they indicate that the frequency is 2.50 Hz and there are three cycles, so the wavelength is:

      L = n \frac{\lambda}{2}

      λ = 2L/n

      λ = 2 6 /3

       λ = 4 m

Wave speed is related to wavelength and frequency

        v = λ f

         v = 4 2.5

         v = 10 m / s

In conclusion, using the characteristics of standing waves we can find the result for the speed of the wave is:

  • The wave speed is:   v = 10 m / s

Learn more here: brainly.com/question/12536719

8 0
3 years ago
A mass of 0.54 kg attached to a vertical spring stretches the spring 36 cm from its original equilibrium position. The accelerat
UNO [17]
<h2>Spring constant is 14.72 N/m</h2>

Explanation:

We have for a spring

            Force =  Spring constant x Elongation

            F = kx

Here force is weight of mass

           F = W = mg = 0.54 x 9.81 = 5.3 N

Elongation, x  = 36 cm = 0.36 m

Substituting

           F = kx

           5.3 = k x 0.36

             k = 14.72 N/m

Spring constant is 14.72 N/m

6 0
2 years ago
If Sherry took her pulse for 6 seconds and felt 14 beats, What would her heart rate be?
Tom [10]

Answer:

140 beats per minute

Explanation:

You have to multiply the ratio 14 beats/6 seconds by 10 because 6 seconds times 10 to get 1 minute. The answer you get is 140 beats/60 seconds.

3 0
2 years ago
Other questions:
  • explain the relationship between kinetic and potential energy in the example (the pic) while using the words mechanical energy a
    10·1 answer
  • An airplane flies with a constant speed of 560 miles per hour. How far can it travel in 1 1/2 hours?
    8·1 answer
  • You are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a n
    12·1 answer
  • Object B has a mass of 8 kg and was lifted at a rate of 3 m/s. What is the kinetic energy of object B?
    5·1 answer
  • A 75 kg football player is gliding forward across very smooth ice at 4.6 m/s. He throws a 0.47 kg football straight forward. A)
    13·1 answer
  • Help! 200 g of water is heated and its temperature goes from 280 K to 300 K. What is the mass?
    5·1 answer
  • What is the velocity of a 1.3 kg puppy with a forward momentum of 6 kg m/s​
    12·1 answer
  • What is the mass of a box that accelerates to 10 m/s/s with a 70 Newton push?
    6·1 answer
  • Describe an object that emits radiation in Astronomy
    9·1 answer
  • Hi I have a question it’s not about the subject but is at the same time what is Physics?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!