1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
I am Lyosha [343]
3 years ago
10

MATHPHYS CAN U HELP ME PLEASE

Physics
1 answer:
ludmilkaskok [199]3 years ago
6 0

Explanation:

(1) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.041 kg) (2090 J/kg/°C) (0°C − (-11°C)) = 942.59 J

The heat added to melt the ice is:

q = mL = (0.041 kg) (3.33×10⁵ J/kg) = 13,653 J

The heat added to warm the water to 100°C is:

q = mCΔT = (0.041 kg) (4186 J/kg/°C) (100°C − 0°C) = 17,162.6 J

The heat added to evaporate the water is:

q = mL = (0.041 kg) (2.26×10⁶ J/kg) = 92,660 J

The heat added to warm the steam to 115°C is:

q = mCΔT = (0.041 kg) (2010 J/kg/°C) (115°C − 100°C) = 1236.15 J

The total heat needed is:

q = 942.59 J + 13,653 J + 17,162.6 J + 92,660 J + 1236.15 J

q = 125,654.34 J

(2) When the first two are mixed:

m C₁ (T₁ − T) + m C₂ (T₂ − T) = 0

C₁ (T₁ − T) + C₂ (T₂ − T) = 0

C₁ (6 − 11) + C₂ (25 − 11) = 0

-5 C₁ + 14 C₂ = 0

C₁ = 2.8 C₂

When the second and third are mixed:

m C₂ (T₂ − T) + m C₃ (T₃ − T) = 0

C₂ (T₂ − T) + C₃ (T₃ − T) = 0

C₂ (25 − 33) + C₃ (37 − 33) = 0

-8 C₂ + 4 C₃ = 0

C₂ = 0.5 C₃

Substituting:

C₁ = 2.8 (0.5 C₃)

C₁ = 1.4 C₃

When the first and third are mixed:

m C₁ (T₁ − T) + m C₃ (T₃ − T) = 0

C₁ (T₁ − T) + C₃ (T₃ − T) = 0

(1.4 C₃) (6 − T) + C₃ (37 − T) = 0

(1.4) (6 − T) + 37 − T = 0

8.4 − 1.4T + 37 − T = 0

2.4T = 45.4

T = 18.9°C

(3) Heat gained by the ice = heat lost by the tea

mL + mCΔT = -mCΔT

m (3.33×10⁵ J/kg) + m (2090 J/kg/°C) (30.8°C − 0°C) = -(0.176 kg) (4186 J/kg/°C) (30.8°C − 32.8°C)

m (397372 J/kg) = 1473.472 J

m = 0.004 kg

m = 4 g

4 grams of ice is melted and warmed to the final temperature, which leaves 128 grams unmelted.

(4) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.028 kg) (2090 J/kg/°C) (0°C − (-67°C)) = 3920.84 J

The heat added to melt the ice is:

q = mL = (0.028 kg) (3.33×10⁵ J/kg) = 9324 J

The heat added to warm the melted ice to T is:

q = mCΔT = (0.028 kg) (4186 J/kg/°C) (T − 0°C) = (117.208 J/°C) T

The heat removed to cool the water to T is:

q = -mCΔT = -(0.505 kg) (4186 J/kg/°C) (T − 27°C)

q = (2113.93 J/°C) (27°C − T) = 57076.11 J − (2113.93 J/°C) T

The heat removed to cool the copper to T is:

q = -mCΔT = -(0.092 kg) (387 J/kg/°C) (T − 27°C)

q = (35.604 J/°C) (27°C − T) = 961.308 J − (35.604 J/°C) T

Therefore:

3920.84 J + 9324 J + (117.208 J/°C) T = 57076.11 J − (2113.93 J/°C) T + 961.308 J − (35.604 J/°C) T

13244.84 J + (117.208 J/°C) T = 58037.418 J − (2149.534 J/°C) T

(2266.742 J/°C) T = 44792.58 J

T = 19.8°C

(5) Kinetic energy of the hammer = heat absorbed by ice

KE = q

½ mv² = mL

½ (0.8 kg) (0.9 m/s)² = m (80 cal/g × 4.186 J/cal × 1000 g/kg)

m = 9.68×10⁻⁷ kg

m = 9.68×10⁻⁴ g

(6) Heat rate = thermal conductivity × area × temperature difference / thickness

q' = kAΔT / t

q' = (1.09 W/m/°C) (4.5 m × 9 m) (10°C − 4°C) / (0.09 m)

q' = 2943 W

After 10.7 hours, the amount of heat transferred is:

q = (2943 J/s) (10.7 h × 3600 s/h)

q = 1.13×10⁸ J

q = 113 MJ

You might be interested in
A sound wave traveling through a solid material has a frequency of 400 hertz. the wavelength of the sound wave is 2 meters. what
Pepsi [2]

Answer:

c. 800m/s

Explanation:

v = f × /\

v = 400 × 2

v = 800m/s

3 0
3 years ago
You push a 85 kg shopping cart from rest with a net force of 250 n for 5 seconds,at which point it flies off a cliff that is 100
Vikki [24]

m = mass of the cart = 85 kg

F = net force on the cart = 250 N

a = acceleration of the cart

acceleration of the cart is given as

a = F/m

a = 250/85

a = 2.94 m/s²

t = time for which the force is applied = 5 sec

v₀ = initial velocity of the cart = 0 m/s

v = final velocity of the cart just before  it flies off the cliff = ?

using the equation

v = v₀ + a t

inserting the values

v = 0 + (2.94) (5)

v = 14.7 m/s

consider the motion of cart after it flies off the cliff in vertical direction :

v' = initial velocity in vertical direction = 0 m/s

a' = acceleration in vertical direction = g = acceleration due to gravity = 9.8 m/s²

t' = time taken for the cart to land = ?

Y' = vertical displacement of the cart = height of cliff = 100 m

using the kinematics equation

Y' = v' t' + (0.5) a' t'²

100 = (0) t' + (0.5) (9.8) t'²

t' = 4.52 sec


consider the motion of cart along the horizontal direction after it flies off the cliff

X = distance traveled from the base of cliff = ?

t' = time of travel = 4.52 sec

v = velocity along the horizontal direction = 14.7 m/s

distance traveled from the base of cliff is given as

X = v t'

X = 14.7 x 4.52

X  = 66.4 m


3 0
3 years ago
I love buying physics toys. I recently broke out my new electromagnetic field meter and started playing with it. After turning i
harkovskaia [24]

Answer:

ionized particles from the sun.

* interactions in radiation belts.

* the friction of the planet in the solar wind

q = +9 10⁵ C

Explanation:

Due to being made up of matter, the planet Earth has a series of positive and negative charges, in general these charges should be balanced and the net charge of the planet should be zero, but there are several phenomena that introduce unbalanced charges, for example:

* ionized particles from the sun.

* interactions in radiation belts.

* the friction of the planet in the solar wind

This creates that the planet has a net electrical load

         

We can roughly calculate the charge of the planet

             E = k q / r²

             q = E r² / k

let's calculate

             q = 200 (6.37 10⁶)²/9 10⁹

              q = +9 10⁵ C

3 0
3 years ago
An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter and water are in thermal equilibrium at 10
Alexeev081 [22]

Answer:

a) c=1822.3214\ J.kg^{-1}.K^{-1}

b) This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).

c) The material is peat, possibly.

d) The material cannot be ice because ice doesn't exists at a temperature of 100°C.

Explanation:

Given:

  • mass of aluminium, m_a=0.1\ kg
  • mass of water, m_w=0.25\ kg
  • initial temperature of the system, T_i=10^{\circ}C
  • mass of copper block, m_c=0.1\ kg
  • temperature of copper block, T_c=50^{\circ}C
  • mass of the other block, m=0.07\ kg
  • temperature of the other block, T=100^{\circ}C
  • final equilibrium temperature, T_f=20^{\circ}C

We have,

specific heat of aluminium, c_a=910\ J.kg^{-1}.K^{-1}

specific heat of copper, c_c=390\ J.kg^{-1}.K^{-1}

specific heat of water, c_w=4186\ J.kg^{-1}.K^{-1}

Using the heat energy conservation equation.

The heat absorbed by the system of the calorie-meter to reach the final temperature.

Q_{in}=m_a.c_a.(T_f-T_i)+m_w.c_w.(T_f-T_i)

Q_{in}=0.1\times 910\times (20-10)+0.25\times 4186\times (20-10)

Q_{in}=11375\ J

The heat released by the blocks when dipped into water:

Q_{out}=m_c.c_c.(T_c-T_f)+m.c.(T-T_f)

where

c= specific heat of the unknown material

For the conservation of energy : Q_{in}=Q_{out}

so,

11375=0.1\times 390\times (50-20)+0.07\times c\times (100-20)

c=1822.3214\ J.kg^{-1}.K^{-1}

b)

This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).

c)

The material is peat, possibly.

d)

The material cannot be ice because ice doesn't exists at a temperature of 100°C.

7 0
3 years ago
Compute the velocity of an electron that has been accelerated through a difference of potential of 100 volts. express your answe
Elodia [21]

The velocity of an electron that has been accelerated through a difference of potential of 100 volts will be 5.93 * 10^{6} m/s

Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Voltage is the amount of push or pressure that is being applied to the electrons.

By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE=q*V. The energy of the electron in electron-volts is numerically the same as the voltage between the plates.

given

charge of electron = 1.6 × 10^{-19} C

mass of electron  = 9.1 × 10^{-31} kg

Force in an electric field = q*E

potential energy is stored in the form of work done

potential energy = work done = Force * displacement

                                                   = q * (E * d)  

                                                   = q * (V) = 1.6 × 10^{-19} * 100

stored potential energy = kinetic energy in electric field

kinetic energy = 1/2 * m * v^{2}

                        = 1/2 *  9.1 × 10^{-31} *  v^{2}

equation both the equations

1/2 *  9.1 × 10^{-31} *  v^{2} = 1.6 × 10^{-17}

v^{2} = 0.352 * 10^{14} m/s

v^{2} = 35.2 * 10^{12}

    = 5.93 * 10^{6} m/s

To learn more about  kinetic energy in electric field  here

brainly.com/question/8666051

#SPJ4

3 0
1 year ago
Other questions:
  • AN airplane travels 4000 m in 20s on a heading 0f 35 degrees north west. Calculate average velocity .
    15·1 answer
  • Referring to the _______scale is a way to estimate the wind speed.
    14·2 answers
  • 488 J of work is done to a box which is moved across the floor for a distance of 8.9 m. What net force is required to act on the
    15·1 answer
  • Hewo thoties can ya'll do me a favor and go friend my bff on here plz and thank u
    10·2 answers
  • Express 79 m in units of (a) centimeters
    9·1 answer
  • air passing over an airplanes wing travels ,and therefore exerts pressure.than air traveling beneath the wing.
    9·1 answer
  • Consider a portion of a cell membrane that has a thickness of 7.50nm and 1.3 micrometers x 1.3 micrometers in area. A measuremen
    15·1 answer
  • A painter on a ladder, painting the ceiling of a room comments. “It is hotter up here by the ceiling than it is down on the floo
    7·1 answer
  • Help me write this three paragraph Physics essay. I'll Venmo you, give me asking price.
    9·1 answer
  • A man walks 6 km north, then turns and walks 6 km east what is the resultant and angle
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!