Answer:
1120 L.
Explanation:
Hello!
In this case, as no conditions of pressure of temperature are given for this problem, we can assume that the scuba diver dives at STP (1 atm and 273.15 K), which means that 1 mole of air would occupy a volume of 22.4 L.
In such a way, since she needs 50.0 moles of air, the following ratio is useful to compute the size (volume) of the tank she needs:

Thereby, we plug in to obtain:

Best regards!
In a typical double displacement reaction, you would have a total of two products (AB + CD —> AD + BC).
Radioactive is the most penetrating nuclear radiation
Given: C3H8(g) + O2(g) ----> CO2 (g) + H2O (g)
Step : Put a 3 in front of CO2 (g) to balance C
=> C3H8(g) + O2(g) ----> 3CO2 + H2O to balance H
Step 2: Put a 4 in front of H2O
=> C3H8 (g) + O2(g) -----> 3CO2 (g) + 4H2O (g)
Step 3: Given that there are 3*2 + 4 = 10 O to the right side, put a 5 in front of O2 to balance O:
=> C3H8(g) + 5O2(g) -----> 3CO2(g) + 4H2O(g)
You can verify that the equation is balanced.
So, the answer is that the coefficient in front of O2 is 5.
The concentration of the original calcium ions is 0.005 M
<h3>What is concentration?</h3>
The term concentration has to do with the amount of substance in solution. We know that the concentration can be measured in a lot of units such as mole/litre, grams per litre, percentage and so on.
As such we have the equation;
Ca^2+(aq) + (NH4)2CrO4(aq) --------> CaCrO4(s) + 2NH4^+(aq)
Number of moles of the precipitate = 346.7 * 10^-3 g/156 g/mol
= 0.0022 moles
Now;
1 mole of Ca^2+ produces 1 mole of CaCrO4 hence 0.0022 moles of CaCrO4 was produced by 0.0022 moles of CaCrO4.
Given that the volume of the solution is 0.440 L, the concentration of the solution is; 0.0022 moles/0.440 L
= 0.005 M
Learn more about molarity:brainly.com/question/8732513
#SPJ1