Answer:
Linear Decreasing
Step-by-step explanation:
Exponential graphs are curved, but this line is straight, so it's linear. It's decreasing since the graph moves from left to right, and as you can see, the line starts from the left tall but gradually goes lower as it goes towards the right.
7x/x-4 * x/x+7
mutiply the numerators together
(7x)(x)= 7x^ 2
mutiply the denominators together
(x-4)(x+7)
(x)(x)(7)(x)= x^2+7x
(-4)(x)(-4)(7)= -4x-28
x^2+7x-4x-28
x^2+3x-28
Answer:
7x^2/x^ 2+3x-28
The nth taylor polynomial for the given function is
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Given:
f(x) = ln(x)
n = 4
c = 3
nth Taylor polynomial for the function, centered at c
The Taylor series for f(x) = ln x centered at 5 is:

Since, c = 5 so,

Now
f(5) = ln 5
f'(x) = 1/x ⇒ f'(5) = 1/5
f''(x) = -1/x² ⇒ f''(5) = -1/5² = -1/25
f'''(x) = 2/x³ ⇒ f'''(5) = 2/5³ = 2/125
f''''(x) = -6/x⁴ ⇒ f (5) = -6/5⁴ = -6/625
So Taylor polynomial for n = 4 is:
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Hence,
The nth taylor polynomial for the given function is
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Find out more information about nth taylor polynomial here
brainly.com/question/28196765
#SPJ4
3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679