1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
8

A bag contains colored tiles.

Mathematics
1 answer:
Stels [109]3 years ago
7 0

Answer:

0.35

Step-by-step explanation:

You might be interested in
Do these math problems if your smart (just a fun thing to do if your bored)
Hatshy [7]

Answer:

I don’t like math

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
The circumference of a circle is 100.48 feet. What is the circle's diameter?
sweet-ann [11.9K]

Answer:

631.334460 ft

Step-by-step explanation:

i think

5 0
3 years ago
Read 2 more answers
“encontrar la integral indefinida y verificar el resultado mediante derivación”
Oliga [24]

I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx

Haz la sustitución:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C

Para confirmar el resultado:

\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}

I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx

Sustituye:

y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx

\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C

(Te dejaré confirmar por ti mismo.)

I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx

Sustituye:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C

I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}

Sustituye:

u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}

\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C

Podemos hacer que esto se vea un poco mejor:

\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}

\implies I=-\dfrac{(t+1)^4}{4t^4}+C

4 0
3 years ago
What is the LCM of 5 and 12
Virty [35]
60. The answer is 60
3 0
3 years ago
Let <img src="https://tex.z-dn.net/?f=K" id="TexFormula1" title="K" alt="K" align="absmiddle" class="latex-formula"> be a circle
yan [13]

The bisector of angle APQ passes through O and this is illustrated below.

<h3>How to illustrate the information?</h3>

From the information given, the center is O. and the circle passes through O and cuts at K.

In this case, it should be noted that the circles are equal according to the SAS test.

Here, AOB + APQ = 180° (Linear pair)

2AOB = 180

AOB = 90.

Therefore, the bisector of angle APQ passes through O.

Learn more about bisector on:

brainly.com/question/11006922

#SPJ1

8 0
2 years ago
Other questions:
  • HURRY PLEASE! i need this asap
    12·1 answer
  • What type of solution does the system of linear equations have?
    13·2 answers
  • Classify the shape below,
    15·1 answer
  • Convert each equation from standard form to slope-intercept form<br><br> 4x + 6y = 48
    14·1 answer
  • Can you help me please and thank you have a great day
    13·2 answers
  • Any helpers?( it’s talking about the blue dot )
    11·2 answers
  • (-4-3n-5n^2)-(n+n-3n^2)
    9·2 answers
  • HELP ME PLASE IM TIMED!!! ILL MARK YOU BRAINLIEST
    9·2 answers
  • What are the possible transformations that could have been used to create the red figure A'B'C'D' from the blue
    8·2 answers
  • A certain disease has an incidence rate of 0.1%. If the false negative rate is 4% and the false positive rate is
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!