TQRS is an inscribed quadrilateral.
5 x - 52° + 3 x + 40° = 180°
8 x - 12° = 180°
8 x = 180° + 12°
8 x = 192°
x = 192° : 8 = 24°
m∠ R = 3 · 24° + 40° = 112°
m∠ T = 5 · 24° - 52° = 68°
m∠ S = 360° - ( 68° + 68° + 112° ) = 112°
Answer:
m∠R, m∠S, m∠T = 112°, 112°, 68°.
if indeed two functions are inverse of each other, then their composite will render a result of "x", namely, if g(x) is indeed an inverse of f(x), then
![\bf (g\circ f)(x)=x\implies g(~~f(x)~~)=x \\\\\\ \begin{cases} f(x) = 3x\\ g(x)=\cfrac{1}{3}x \end{cases}\qquad \qquad g(~~f(x)~~)=\cfrac{1}{3}[f(x)]\implies g(~~f(x)~~)=\cfrac{1}{3}(3x)](https://tex.z-dn.net/?f=%5Cbf%20%28g%5Ccirc%20f%29%28x%29%3Dx%5Cimplies%20g%28~~f%28x%29~~%29%3Dx%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20f%28x%29%20%3D%203x%5C%5C%20g%28x%29%3D%5Ccfrac%7B1%7D%7B3%7Dx%20%5Cend%7Bcases%7D%5Cqquad%20%5Cqquad%20g%28~~f%28x%29~~%29%3D%5Ccfrac%7B1%7D%7B3%7D%5Bf%28x%29%5D%5Cimplies%20g%28~~f%28x%29~~%29%3D%5Ccfrac%7B1%7D%7B3%7D%283x%29)
Answer:
0+100 1+1000 2+2000 3+3000
Step-by-step explanation:
Answer:
$85 * thats how much he received
Answer: 120 ways
Step-by-step explanation: In this problem, we're asked how many ways can 5 people be arranged in a line.
Let's start by drawing 5 blanks to represent the 5 different positions in the line.
Now, we know that 5 different people can fill the spot in the first position. However, once the first position is filled, only 4 people can fill the second spot and once the second spot is filled, only 3 people can fill the third spot and so on. So we have <u>5</u> <u>4</u> <u>3</u> <u>2</u> <u>1</u>.
Now, based on the counting principle, there are 5 x 4 x 3 x 2 x 1 ways for all 5 spots to be filled.
5 x 4 is 20, 20 x 3 is 60, 60 x 2 is 120, and 120 x 1 is 120.
So there are 120 ways for all 5 spots to be filled which means that there are 120 ways that 5 people can be arranged in a line.
I have also shown my work on the whiteboard in the image attached.