The numbers of chairs and tables that should be produced each week in order to maximize the company's profit is 15 chairs and 18 tables.
Since a furniture company has 480 board ft of teak wood and can sustain up to 450 hours of labor each week, and each chair produced requires 8 ft of wood and 12 hours of labor, and each table requires 20 ft of wood and 15 hours of labor, to determine, if a chair yields a profit of $ 65 and a table yields a profit of $ 90, what are the numbers of chairs and tables that should be produced each week in order to maximize the company's profit, the following calculation should be done:
- 16 chairs; 24 tables
- Time used = 16 x 12 + 24 x 15 = 192 + 360 = 552
- Wood used = 16 x 8 + 24 x 20 = 128 + 480 = 608
- 15 chairs; 18 tables
- Time used = 15 x 12 + 18 x 15 = 180 + 270 = 450
- Wood used = 15 x 8 + 18 x 20 = 120 + 360 = 480
- 12 chairs; 28 tables
- Time used = 12 x 12 + 28 x 15 = 144 + 420 = 564
- Wood used = 12 x 8 + 28 x 20 = 96 + 540 = 636
- 18 chairs; 20 tables
- Time used = 18 x 12 + 20 x 15 = 216 + 300 = 516
- Wood used = 18 x 8 + 20 x 20 = 144 + 400 = 544
Therefore, the only option that meets the requirements of time and wood used is that of 15 chairs and 18 tables, whose economic benefit will be the following:
- 15 x 65 + 18 x 90 = X
- 975 + 1,620 = X
- 2,595 = X
Therefore, the numbers of chairs and tables that should be produced each week in order to maximize the company's profit is 15 chairs and 18 tables.
Learn more in brainly.com/question/14728529
To solve for

You first need to find a common denominator.
To do so, you need to make both denominators 10 by multiplying the top and bottom of

by 5

=

Reduce by dividing both the top and bottom by 2
Your answer is
Multiply both sides of your equation bye the denominator
25-4x=16-4x
25-4x+4x=16-4x+4x
25=16
No solution
Contradiction
A) The constant of proportionality in this proportional relationship is 
B) The equation to represent this proportional relationship is y = 0.2x
<h3><u>Solution:</u></h3>
Given that,
The amount Naomi pays each month for international text messages is proportional to the number of international texts she sends that month
Therefore,
This is a direct variation proportion

Let "y" be the amount that Naomi pays each month
Let "x" be the number of international texts she sends that month
Therefore,

y = kx -------- eqn 1
Where, "k" is the constant of proportionality
Thus the constant of proportionality in this proportional relationship is:

<em><u>Last month, she paid $3.20 for 16 international texts</u></em>
Therefore,
y = 3.20
x = 16
Thus from eqn 1,

Substitute k = 0.2 in eqn 1
y = 0.2x
The equation would then be y = 0.2x