Answer:
d = 68.5 x 10⁻⁶ m = 68.5 μm
Explanation:
The complete question is as follows:
An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is 1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?
The answer can be given by using the formula derived from Young's Double Slit Experiment:

where,
d = slit separation = ?
λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m
L = distance from screen (detector) = 1.7 m
y = distance between bright fringes = 15.7 mm = 0.0157 m
Therefore,

<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>
Answer:
We are social beings and we are going to be able to make a paper gun very very small it want to be a hacker in real life and we are going to be able to make
I think the correct answer is D: Potential Energy.
Answer:
Gravity creates stars and planets by pulling together the material from which they are made.
Explanation: Thats the only thing i have im stuck on the tga quiz
The energy of photon in kJ/mol is 329kJ/mol.
Wavelength of radiation is 370nm. The frequency of given wavelength is
ν = c / λ
ν = 3×10^8 / 370×10^-9
ν = 8.11 × 10^14 s^-1
Now the energy of photon is:
E = hν
E = 6.63×10^-34 J.s/photon × 8.11×10^14s^-1
E = 5.41× 10^-19 J/photon
To find in mole
E = 5.41× 10^-19 × 6.022×10^23
E = 3.29 ×10^ 5 J/mol
So, the energy of mole of photon is equal to 329 kJ/mol.
Learn more about radiation here:
brainly.com/question/18650102
#SPJ4