1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
2 years ago
12

Question 11(Multiple Choice Worth 3 points)

Physics
1 answer:
melomori [17]2 years ago
8 0

Answer:

Explanation:

The only thing that decreases the gravitational pull between 2 objects is if you<u> increase the distance.</u>

The formula is F = G*m*m/r^2

As r^2 gets larger and G and m1 and m2 remain the same, F has to get smaller because r^2 divides into G*m1*m2

You might be interested in
How does tightening a string on a guitar affect its natural frequency?
iragen [17]
By tightening a string you are actually putting more stress on the string you are giving it a new frequency that isn't natural.

Hope this helps
<span />
3 0
3 years ago
Read 2 more answers
Which color is in the middle of the light spectrum?
Elanso [62]
Well, with the light spectrum there technically is no middle color. Both green and yellow meet up in the middle at 560 nm (wavelength interval) and 540 THz (frequency interval).
3 0
2 years ago
0.5 kg air hockey puck is initially at rest. What will it’s kinetic energy be after a net force of .8 N acts on it for a distanc
weqwewe [10]

Answer:

1.6 J

Explanation:

Work = change in energy

W = ΔKE

Fd = KE

(0.8 N) (2 m) = KE

KE = 1.6 J

4 0
3 years ago
PLEASE HELP ME 45 POINTS
sergij07 [2.7K]

Answer:

a) We kindly invite you to see the explanation and the image attached below.

b) The acceleration of the masses is 4.203 meters per square second.

c) The tension force in the cord is 28.02 newtons.

d) The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is 3.551 meters per second.

Explanation:

a) At first we assume that pulley and cord are both ideal, that is, masses are negligible and include the free body diagrams of each mass and the pulley in the image attached below.

b) Both masses are connected to each other by the same cord, the direction of acceleration will be dominated by the mass of greater mass (mass A) and both masses have the same magnitude of acceleration. By the 2nd Newton's Law, we create the following equation of equilibrium:

Mass A

\Sigma F = T - m_{A}\cdot g = -m_{A}\cdot a (1)

Mass B

\Sigma F = T - m_{B}\cdot g = m_{B}\cdot a (2)

Where:

T - Tension force in the cord, measured in newtons.

m_{A}, m_{B} - Masses of blocks A and B, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration of the each block, measured in meters per square second.

By subtracting (2) by (1), we get an expression for the acceleration of each mass:

m_{B}\cdot a +m_{A}\cdot a = T-m_{B}\cdot g -T + m_{A}\cdot g

(m_{B}+m_{A})\cdot a = (m_{A}-m_{B})\cdot g

a = \frac{m_{A}-m_{B}}{m_{B}+m_{A}} \cdot g

If we know that m_{A} = 5\,kg, m_{B} = 2\,kg and g = 9.807\,\frac{m}{s^{2}}, then the acceleration of the masses is:

a = \left(\frac{5\,kg-2\,kg}{5\,kg+2\,kg}\right) \cdot\left(9.807\,\frac{m}{s^{2}} \right)

a = 4.203\,\frac{m}{s^{2}}

The acceleration of the masses is 4.203 meters per square second.

c) From (2) we get the following expression for the tension force in the cord:

T = m_{B}\cdot (a+g)

If we know that m_{B} = 2\,kg, g = 9.807\,\frac{m}{s^{2}} and a = 4.203\,\frac{m}{s^{2}}, then the tension force in the cord:

T = (2\,kg)\cdot \left(4.203\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}  \right)

T = 28.02\,N

The tension force in the cord is 28.02 newtons.

d) Given that system starts from rest and net acceleration is constant, we determine the time taken by the block to cover a distance of 1.5 meters through the following kinematic formula:

\Delta y  = \frac{1}{2}\cdot a\cdot t^{2} (3)

Where:

a - Net acceleration, measured in meters per square second.

t - Time, measured in seconds.

\Delta y - Covered distance, measured in meters.

If we know that a = 4.203\,\frac{m}{s^{2}} and \Delta y = 1.5\,m, then the time taken by the system is:

t = \sqrt{\frac{2\cdot \Delta y}{a} }

t = \sqrt{\frac{2\cdot (1.5\,m)}{4.203\,\frac{m}{s^{2}} } }

t \approx 0.845\,s

The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is calculated by the following formula:

v = a\cdot t (4)

Where v is the final speed of the system, measured in meters per second.

If we know that a = 4.203\,\frac{m}{s^{2}} and t \approx 0.845\,s, then the final speed of the system is:

v = \left(4.203\,\frac{m}{s^{2}} \right)\cdot (0.845\,s)

v = 3.551\,\frac{m}{s}

The final speed of the system is 3.551 meters per second.

8 0
2 years ago
The conventional system of signs that indicate relative durations of long and short sounds is called.
Rudiy27

Musical notation is the term used to describe the common system of signs used to denote the relative duration of long and short sounds.

<h3>What is a musical notation?</h3>

Music notation, often known as musical notation, is any technique used to graphically express audibly perceived music performed with instruments or sung by a human voice using written, printed, or other symbol-based representations. This includes notation for periods of silence like rests.

Throughout history, many civilizations have used different types of notation, and the knowledge of early musical notation is generally sparse. Different musical genres and cultural groups employ various methods of music notation, even during the same time period, such as the 2010s. For instance, while sheet music with staves and note-heads is the most popular method for professional classical musicians, the Nashville Number System is the main method used by professional country music session musicians.

To know more about musical notation, visit:

brainly.com/question/2639260

#SPJ4

6 0
1 year ago
Other questions:
  • For a magnetic field strength of 2T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical
    14·1 answer
  • A 50kg box is pulled on by a rope. The rope applies a horizontal force of 180 N to the box. What is the normal force exerted on
    8·1 answer
  • A hydrogen fuel cell supplies power for a small motor. the fuel cell delivers a current of 0.5 a and a voltage of 0.43 v. what i
    15·1 answer
  • Is the study of muscle movements in the human body an example of biology
    11·1 answer
  • James took two pea plants, placing one in a dark closet and the other on a sunny window sill. both are located in air-conditione
    15·1 answer
  • An engineer in a locomotive sees a car stuck on the track at a railroad crossing in front of the train. When the engineer first
    9·1 answer
  • The "lead" in pencils is a graphite composition with a Young’s modulus of about 1×1010N/m21×1010⁢N/m2. Calculate the change in l
    5·1 answer
  • Which of the following is a vector quantity?
    14·1 answer
  • Two factors affect the amount of thermal energy in an object, The amount of space between its particles and The amount of motion
    5·1 answer
  • With the aim of a diagram describe how a rain bow is formed​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!