He has a mass of 56 kg.
The equation given is PE = mgh.
PE = 4620 J
h = 8.4
g = 9.8
Therefore:
4620 = 82.32m
m = 4620/82.32
m = 56 (rounded to two significant digits)
Answer:
The frequencies are 
Explanation:
From the question we are told that
The speed of the wave is 
The length of vibrating clothesline is 
Generally the fundamental frequency is mathematically represented as

=> 
=> 
Now this other frequencies of vibration experience by the clotheslines are know as harmonics and they are obtained by integer multiple of the fundamental frequency
So
The frequencies are mathematically represented as

=> 
Where n = 1, 2, 3 ....
Answer:
The Stefan–Boltzmann constant (also Stefan's constant), a physical constant denoted by the Greek letter σ (sigma), is the constant of proportionality in the Stefan–Boltzmann law: "the total intensity radiated over all wavelengths increases as the temperature increases", of a black body which is proportional to the ...
Answer: 3.41 s
Explanation:
Assuming the question is to find the time
the ball is in air, we can use the following equation:

Where:
is the final height of the ball
is the initial height of the ball
is the initial velocity of the ball
is the time the ball is in air
is the acceleration due to gravity

Then:


Multiplying both sides of the equation by -1 and rearranging:

At this point we have a quadratic equation of the form
, which can be solved with the following formula:
Where:
Substituting the known values:
Solving the equation and choosing the positive result we have:
This is the time the ball is in air