The answer is C.) 2002
The graph shows that the previous years have been under that, the number of markets is shown on the y axis
To solve this problem you must apply the proccedure shown below:
1. You have that the ellipse given as a vertical major axis (a=13), therefore, taking the ellipse with its center at the origin, you have the following equation:
(y^2/a^2)+(x^2/b^2)=1
2. You have the distance from the center of the ellipse to the focus:
c=12, therefore, you can calculate the value of b, the minor radius:
c^2=a^2-b^2
b=√(13^3-12^2)
b=5
3. Therefore, the equation is:
a^2=169
b^2=25
(y^2/169)+(x^2/25)=1
The answer is: (y^2/169)+(x^2/25)=1
Answer:
If you are looking for an equation, then it would be 25 < x.
Step-by-step explanation:
Answer:
r = √13
Step-by-step explanation:
Starting with x^2+y^2+6x-2y+3, group like terms, first x terms and then y terms: x^2 + 6x + y^2 -2y = 3. Please note that there has to be an " = " sign in this equation, and that I have taken the liberty of replacing " +3" with " = 3 ."
We need to "complete the square" of x^2 + 6x. I'll just jump in and do it: Take half of the coefficient of the x term and square it; add, and then subtract, this square from x^2 + 6x: x^2 + 6x + 3^2 - 3^2. Then do the same for y^2 - 2y: y^2 - 2y + 1^2 - 1^2.
Now re-write the perfect square x^2 + 6x + 9 by (x + 3)^2. Then we have x^2 + 6x + 9 - 9; also y^2 - 1y + 1 - 1. Making these replacements:
(x + 3)^2 - 9 + (y - 1)^2 -1 = 3. Move the constants -9 and -1 to the other side of the equation: (x + 3)^2 + (y - 1)^2 = 3 + 9 + 1 = 13
Then the original equation now looks like (x + 3)^2 + (y - 1)^2 = 13, and this 13 is the square of the radius, r: r^2 = 13, so that the radius is r = √13.