1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FrozenT [24]
3 years ago
9

Find (3c2 - 8c + 5) + (c2 - 8c - 6).

Mathematics
1 answer:
Gelneren [198K]3 years ago
4 0

Answer: B

4c^2 - 16c - 1

Step-by-step explanation:

(3c2 - 8c + 5) + (c2 - 8c - 6).

remove parantheses.

3c2 - 8c + 5 + c2 - 8c - 6

add common factors

answer= 4c^2 - 16c - 1

You might be interested in
An airport limousine can accommodate up to four passengers on any one trip. The company will accept a maximum of six reservation
Andrej [43]

Answer:

0.23328,2.4

Step-by-step explanation:

Given that an airport limousine can accommodate up to four passengers on any one trip. The company will accept a maximum of six reservations for a trip, and a passenger must have a reservation.

Assuming independence we can say persons who do not show up is binomial with p = 0.4 and n = 6

a) If six reservations are made, what is the probability that at least one individual with a reservation cannot be accommodated on the trip

= P(X\leq 1)\\=0.23328

b) Expected no of available places = E(x)=np = 6(0.4) = 2.4

8 0
3 years ago
Can someone help me?<br><br>2b²+17b+21<br><br>Thanks​
vladimir1956 [14]

Answer:

(2b+3) (b+7)

Step-by-step explanation:

2b²+17b+21

2b²+14b+3b+21

2b(b+7) + 3(b+7)

(2b+3) (b+7)

6 0
3 years ago
Read 2 more answers
What is the probability that a red or green marble will be selected from a bag containing 9 red marbles, 6 blue marbles, 7 green
lara31 [8.8K]

Answer: \bold{\dfrac{16}{33} = 48\%}

<u>Step-by-step explanation:</u>

  Red  or  Green

=\dfrac{red}{total}+\dfrac{green}{total}

=\dfrac{9}{33}+\dfrac{7}{33}

=\dfrac{16}{33}

≈ 48%






4 0
4 years ago
Helppppppppppp:)))))))))
Whitepunk [10]

Hi there!

We are given the set of ordered pairs below:

\large \boxed{(3, - 1),(2, - 2),(0,2),(2,1)}

1. What is the domain?

  • Domain is a set of all x-values in one set of ordered pairs. So what are the x-values that I am talking about? In ordered pairs, we define x and y which both have relation to each others which we can write as (x,y). That's right, the domain is set of all x-values from ordered pairs.

Therefore, we gather only x-values from (x,y). Hence, the domain is {3,2,0,2}. Whoops! Something is not right. As we learn in Set Theory that we don't write the same or repetitive in a set. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>a</u><u>c</u><u>t</u><u>u</u><u>a</u><u>l</u><u> </u><u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>0</u><u>,</u><u>2</u><u>,</u><u>3</u><u>}</u>

2. What is the range?

  • Because domain is set of all x-values. Then what do you think the range is? That's right! The range is <u>s</u><u>e</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>a</u><u>l</u><u>l</u><u> </u><u>y</u><u>-</u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>s</u><u>.</u> If you got this right before looking up the underlined words then a handclap for you! So how do we find range? Simple, we just do like finding the domain in the Q1, except we gather the y-values in (x,y) instead and make sure that we don't write same number!

Therefore, gather y-values from the ordered pairs. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>r</u><u>a</u><u>n</u><u>g</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>-</u><u>2</u><u>,</u><u>-</u><u>1</u><u>,</u><u>1</u><u>,</u><u>2</u><u>}</u>

3. Is the relation a function?

  • All functions are relations but not all relations are functions. Function is a set of ordered pairs where <u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>n</u><u>o</u><u>t</u><u> </u><u>r</u><u>e</u><u>p</u><u>e</u><u>t</u><u>i</u><u>t</u><u>i</u><u>v</u><u>e</u><u> </u><u>o</u><u>r</u><u> </u><u>i</u><u>n</u><u> </u><u>a</u><u> </u><u>s</u><u>e</u><u>t</u><u>,</u><u> </u><u>t</u><u>h</u><u>e</u><u>r</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u>n</u><u>o</u><u>t</u><u> </u><u>b</u><u>e</u><u> </u><u>m</u><u>o</u><u>r</u><u>e</u><u> </u><u>t</u><u>h</u><u>a</u><u>n</u><u> </u><u>o</u><u>n</u><u>e</u><u> </u><u>s</u><u>a</u><u>m</u><u>e</u><u> </u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>.</u> Consider the following relation: (1,1),(1,2) - Oh, looks like in a set of ordered pairs, there are two same domains which make it only a relation, and not a function. On the other hand, (1,1),(2,2) - Looking good! No same or repetitive domain, making it indeed a function.

Consider the domain from Q1 and see if there are two same values of x in a set. Looks like the relation is not a function since there are same x-values which are 2 in a set, making it only a relation. Hence, the relation is not a function.

These are all 3 answers along with an explanation. Let me know if you have any doubts regarding Relations and Functions.

<em>F</em><em>r</em><em>o</em><em>m</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Q</em><em>1</em><em>'</em><em>s</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>,</em><em> </em><em>t</em><em>h</em><em>e</em><em>r</em><em>e</em><em> </em><em>a</em><em>r</em><em>e</em><em> </em><em>t</em><em>w</em><em>o</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em>s</em><em>,</em><em> </em><em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>c</em><em>h</em><em>o</em><em>o</em><em>s</em><em>e</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>u</em><em>n</em><em>d</em><em>e</em><em>r</em><em>l</em><em>i</em><em>n</em><em>e</em><em>)</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>n</em><em>o</em><em>t</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>f</em><em>i</em><em>r</em><em>s</em><em>t</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>s</em><em>a</em><em>m</em><em>e</em><em> </em><em>2</em><em>'</em><em>s</em><em>)</em><em>.</em><em> </em>

Good luck on your assignment, have a nice day!

4 0
3 years ago
I need help ASAP please help me
garri49 [273]

Answer:

your question is sideways take the picture again plz.

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • The 24 students in Ms.Lee’s class each collected an average of 18 cans for recycling. The 21 students in Mr.Galvez’s class each
    12·1 answer
  • Can someone help mewith this
    15·2 answers
  • Mr. kasberg rides his bike at 6 mph to the bus station. he then rides the bus to work, averaging 30 mph. if he spends 20 minutes
    9·1 answer
  • How can you check if a point is an element of the function?
    12·1 answer
  • The president of a company wants to know about how many of the office chairs in the building need to be replaced. Which sampling
    13·1 answer
  • Which category best describe this group of shapes
    12·1 answer
  • Helpppp<br><br> What is the slope of each line?<br> у<br> 8<br> 6<br> 4<br> 2<br> O<br> 2 4 6 8
    13·2 answers
  • A number is chosen at random from 1 to 50. What is the probability of selecting<br> multiples of 10.
    12·1 answer
  • 7y-9=-3<br> What is the value of 9? HELP!!!
    10·2 answers
  • In how many ways can the letters in the word spoon be arranged?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!