The limit as a definite integral on the interval
on [2π , 4π] is
.
<h3>
What is meant by definite integral?</h3>
A definite integral uses infinitesimal slivers or stripes of the region to calculate the area beneath a function. Integrals can be used to represent a region's (signed) area, the cumulative value of a function changing over time, or the amount of a substance given its density.
Definite integral, a term used in mathematics. is the region in the xy plane defined by the graph of f, the x-axis, and the lines x = a and x = b, where the area above the x-axis adds to the total and the area below the x-axis subtracts from the total.
If an antiderivative F exists for the interval [a, b], the definite integral of the function is the difference of the values at points a and b. The definite integral of any function can also be expressed as the limit of a sum.
Let the equation be

substitute the values in the above equation, we get
=
on [2π, 4π],
simplifying the above equation

To learn more about definite integral refer to:
brainly.com/question/24353968
#SPJ4
6 is in the ones place
.5 is in the tenths place
and the 4 in 6.54 is in the hundredths place
Answer:
The length of the rectangle is 12cm and the area of the rectangle is 60cm2.
Explanation:
By definition, the angles of a rectangle are right. Therefore, drawing a diagonal creates two congruent right triangles. The diagonal of the rectangle is the hypotenuse of the right triangle. The sides of the rectangle are the legs of the right triangle. We can use the Pythagorean Theorem to find the unknown side of the right triangle, which is also the unknown length of the rectangle.
Recall that the Pythagorean Theorem states that the sun of the squares of the legs of a right triangle is equal to the square of the hypotenuse. a2+b2=c2
52+b2=132
25+b2=169
25−25+b2=169−25
b2=144
√b2=√144
b=±12
Since the length of the side is a measured distance, the negative root is not a reasonable result. So the length of the rectangle is 12 cm.
The area of a rectangle is given by multiplying the width by the length.
A=(5cm)(12cm)
A=60cm2
Answer:
Yes.
Step-by-step explanation:
Just like normal algebra, you factor our the common factor, in this case, 5.
Thus,

If there are 12 items adding up to 60%, we want to know how many items more it will take to equal 100% So set up this equation 12/x = .6 then solve for x. x=12/.6 x = 20 now that we know the total you can subtract 12 from 20 and get 8, that is the number of items left on the list.