Answer:
18- 300
20- 1,500
22- 300
Step-by-step explanation:
You can easily find the answer like this:
18. Multiply 60 and 100 together. The hundred is from 100%. After that, divide it by 20 because of the percent. After doing this, you should get 300.
20. 360*100=36,000 36,000/24= 1,500
22. 9*100=900 900/3=300
I hope this is what you were looking for. If you need more out of this, ask me to answer it again. :)
Answer:
<em>The options are not visible enough (See Explanation)</em>
Step-by-step explanation:
Given
x:- 1 || 2 || 3 || 4 || 5
y:- 13 || 22 || 37 || 58 || 85
Required
Determine if the function is quadratic
Calculate the difference between the values of y




<em>The resulting difference are: 9 || 15 || 21 || 27</em>
Next; Calculate the difference between the difference of values of y



<em>The resulting difference are: 6 || 6 || 6</em>
<em>For the function to be quadratic, the above difference must be the same and since they are the same (6), then the function represents a quadratic function.</em>
Answer:
Tan T = 7/24
Step-by-step explanation:
Firstly, please check attachment to have a picture of the triangle we are solving.
Now, we are concerned with calculating the ratio that represents the tangent of angle T.
Mathematically, the tangent of an angle is the ratio of the length of the opposite to the length of the adjacent.
In this question, our opposite is 7 while the adjacent is 24.
Thus Tan T = 7/24
Answer:
-7, -6, -4, -2, 0, 2, 5, 7, 8, 9
Step-by-step explanation:
Answer:
![\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}}\rightarrow\frac{2x}{3y}\\\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} \rightarrow\frac{3y}{2x}\\\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}}\rightarrow\frac{4x^2}{5y}\\\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}}\rightarrow\frac{3x^2}{2y}\\\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} \rightarrow\frac{2xy}{3}\\\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}}\rightarrow\frac{x}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E6y%5E4%7D%7B81x%5E2y%5E8%7D%7D%5Crightarrow%5Cfrac%7B2x%7D%7B3y%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B81x%5E2y%5E%7B10%7D%7D%7B81x%5E6y%5E6%7D%7D%20%5Crightarrow%5Cfrac%7B3y%7D%7B2x%7D%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B64x%5E8y%5E7%7D%7B125x%5E2y%5E%7B10%7D%7D%7D%5Crightarrow%5Cfrac%7B4x%5E2%7D%7B5y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B243x%5E%7B17%7Dy%5E%7B16%7D%7D%7B32x%5E7y%5E%7B21%7D%7D%7D%5Crightarrow%5Cfrac%7B3x%5E2%7D%7B2y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B32x%5E%7B12%7Dy%5E%7B15%7D%7D%7B243x%5E7y%5E%7B10%7D%7D%7D%20%5Crightarrow%5Cfrac%7B2xy%7D%7B3%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B10%7Dy%5E%7B9%7D%7D%7B256x%5E2y%5E%7B17%7D%7D%7D%5Crightarrow%5Cfrac%7Bx%7D%7B2y%7D)
Step-by-step explanation:
![\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}} =\sqrt[4]{\frac{(2^4)(x^{6-2})(y^{4-8})}{(3^4)}} =\sqrt[4]{\frac{2^4x^4y^{-4}}{3^4}} =\frac{2xy^{-1}}{3}=\frac{2x}{3y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E6y%5E4%7D%7B81x%5E2y%5E8%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B%282%5E4%29%28x%5E%7B6-2%7D%29%28y%5E%7B4-8%7D%29%7D%7B%283%5E4%29%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B2%5E4x%5E4y%5E%7B-4%7D%7D%7B3%5E4%7D%7D%20%3D%5Cfrac%7B2xy%5E%7B-1%7D%7D%7B3%7D%3D%5Cfrac%7B2x%7D%7B3y%7D)
![\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} =\sqrt[4]{\frac{(3^4)(x^{2-6})(y^{10-6})}{(2^4)}} =\sqrt[4]{\frac{3^4x^{-4}y^{4}}{2^4}} =\frac{3x^{-1}y^1}{3}=\frac{3y}{2x}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B81x%5E2y%5E%7B10%7D%7D%7B81x%5E6y%5E6%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B%283%5E4%29%28x%5E%7B2-6%7D%29%28y%5E%7B10-6%7D%29%7D%7B%282%5E4%29%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B3%5E4x%5E%7B-4%7Dy%5E%7B4%7D%7D%7B2%5E4%7D%7D%20%3D%5Cfrac%7B3x%5E%7B-1%7Dy%5E1%7D%7B3%7D%3D%5Cfrac%7B3y%7D%7B2x%7D)
![\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}} =\sqrt[3]{\frac{(4^3)(x^{8-2})(y^{7-10})}{(5^3)}} =\sqrt[3]{\frac{4^3x^6y^{-3}}{5^3}} =\frac{4x^2y^{-1}}{5}=\frac{4x^2}{5y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B64x%5E8y%5E7%7D%7B125x%5E2y%5E%7B10%7D%7D%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%284%5E3%29%28x%5E%7B8-2%7D%29%28y%5E%7B7-10%7D%29%7D%7B%285%5E3%29%7D%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%5E3x%5E6y%5E%7B-3%7D%7D%7B5%5E3%7D%7D%20%3D%5Cfrac%7B4x%5E2y%5E%7B-1%7D%7D%7B5%7D%3D%5Cfrac%7B4x%5E2%7D%7B5y%7D)
![\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}} =\sqrt[5]{\frac{(3^5)(x^{17-7})(y^{16-21})}{(2^5)}} =\sqrt[5]{\frac{3^5x^{10}y^{-5}}{2^5}} =\frac{3x^2y^{-1}}{2}=\frac{3x^2}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%5Cfrac%7B243x%5E%7B17%7Dy%5E%7B16%7D%7D%7B32x%5E7y%5E%7B21%7D%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B%283%5E5%29%28x%5E%7B17-7%7D%29%28y%5E%7B16-21%7D%29%7D%7B%282%5E5%29%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B3%5E5x%5E%7B10%7Dy%5E%7B-5%7D%7D%7B2%5E5%7D%7D%20%3D%5Cfrac%7B3x%5E2y%5E%7B-1%7D%7D%7B2%7D%3D%5Cfrac%7B3x%5E2%7D%7B2y%7D)
![\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} =\sqrt[5]{\frac{(2^5)(x^{12-7})(y^{15-10})}{(3^5)}} =\sqrt[5]{\frac{2^5x^{5}y^{5}}{3^5}} =\frac{2x^1y^{1}}{3}=\frac{2xy}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%5Cfrac%7B32x%5E%7B12%7Dy%5E%7B15%7D%7D%7B243x%5E7y%5E%7B10%7D%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B%282%5E5%29%28x%5E%7B12-7%7D%29%28y%5E%7B15-10%7D%29%7D%7B%283%5E5%29%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B2%5E5x%5E%7B5%7Dy%5E%7B5%7D%7D%7B3%5E5%7D%7D%20%3D%5Cfrac%7B2x%5E1y%5E%7B1%7D%7D%7B3%7D%3D%5Cfrac%7B2xy%7D%7B3%7D)
![\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}} =\sqrt[4]{\frac{(2^4)(x^{10-2})(y^{9-17})}{(4^4)}} =\sqrt[4]{\frac{2^4x^{8}y^{-8}}{4^4}} =\frac{2x^{1}y^{-1}}{4}=\frac{x}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B10%7Dy%5E%7B9%7D%7D%7B256x%5E2y%5E%7B17%7D%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B%282%5E4%29%28x%5E%7B10-2%7D%29%28y%5E%7B9-17%7D%29%7D%7B%284%5E4%29%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B2%5E4x%5E%7B8%7Dy%5E%7B-8%7D%7D%7B4%5E4%7D%7D%20%3D%5Cfrac%7B2x%5E%7B1%7Dy%5E%7B-1%7D%7D%7B4%7D%3D%5Cfrac%7Bx%7D%7B2y%7D)
Thus,
![\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}}\rightarrow\frac{2x}{3y}\\\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} \rightarrow\frac{3y}{2x}\\\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}}\rightarrow\frac{4x^2}{5y}\\\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}}\rightarrow\frac{3x^2}{2y}\\\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} \rightarrow\frac{2xy}{3}\\\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}}\rightarrow\frac{x}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E6y%5E4%7D%7B81x%5E2y%5E8%7D%7D%5Crightarrow%5Cfrac%7B2x%7D%7B3y%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B81x%5E2y%5E%7B10%7D%7D%7B81x%5E6y%5E6%7D%7D%20%5Crightarrow%5Cfrac%7B3y%7D%7B2x%7D%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B64x%5E8y%5E7%7D%7B125x%5E2y%5E%7B10%7D%7D%7D%5Crightarrow%5Cfrac%7B4x%5E2%7D%7B5y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B243x%5E%7B17%7Dy%5E%7B16%7D%7D%7B32x%5E7y%5E%7B21%7D%7D%7D%5Crightarrow%5Cfrac%7B3x%5E2%7D%7B2y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B32x%5E%7B12%7Dy%5E%7B15%7D%7D%7B243x%5E7y%5E%7B10%7D%7D%7D%20%5Crightarrow%5Cfrac%7B2xy%7D%7B3%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B10%7Dy%5E%7B9%7D%7D%7B256x%5E2y%5E%7B17%7D%7D%7D%5Crightarrow%5Cfrac%7Bx%7D%7B2y%7D)