1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
3 years ago
12

Reduce the following differential equation to first-order and solve it. ​

Mathematics
1 answer:
Kryger [21]3 years ago
4 0

Given that <em>y</em>₁<em>(x)</em> = <em>x</em> is a solution to the given second-order ODE, assume a second solution of the form

<em>y</em>₂<em>(x)</em> = <em>y</em>₁<em>(x)</em> <em>v(x)</em> = <em>x</em> <em>v(x)</em>

Take the first two derivatives and substitute this solution into the ODE:

<em>y</em>₂ = <em>x</em> <em>v</em>

<em>y</em>₂<em>'</em> = <em>x</em> <em>v'</em> + <em>v</em>

<em>y</em>₂<em>''</em> = (<em>x</em> <em>v''</em> + <em>v' </em>) + <em>v'</em> = <em>x</em> <em>v''</em> + 2 <em>v'</em>

→   (1 - <em>x</em> ²) <em>y</em>₂<em>''</em> - 2 <em>x y</em>₂<em>'</em> + 2 <em>y</em>₂ = 0

→   (1 - <em>x</em> ²) (<em>x</em> <em>v''</em> + 2 <em>v'</em> ) - 2 <em>x </em>(<em>x</em> <em>v'</em> + <em>v</em>) + 2 <em>x v</em> = 0

→   (<em>x</em> - <em>x</em> ³) <em>v''</em> + (2 - 4 <em>x</em> ²) <em>v'</em> = 0

Next, reduce the order by substituting <em>w(x)</em> = <em>v'(x)</em> and <em>w'(x)</em> = <em>v''(x)</em> :

→   (<em>x</em> - <em>x</em> ³) <em>w'</em> + (2 - 4 <em>x</em> ²) <em>w</em> = 0

and now you have a linear equation in <em>w</em>. Solve for <em>w(x)</em> however you like; I'll just separate variables.

Write <em>w'(x)</em> = d<em>w</em>/d<em>x</em>, then separate variables as

(<em>x</em> - <em>x</em> ³) d<em>w</em>/d<em>x</em> + (2 - 4 <em>x</em> ²) <em>w</em> = 0

(<em>x</em> - <em>x</em> ³) d<em>w</em>/d<em>x</em> = (4<em>x</em> ² - 2) <em>w</em>

d<em>w</em>/<em>w</em> = (4<em>x</em> ² - 2) / (<em>x</em> - <em>x</em> ³) d<em>x</em>

Integrate both sides:

∫ d<em>w</em>/<em>w</em> = (4<em>x</em> ² - 2) / (<em>x</em> - <em>x</em> ³) d<em>x</em>

ln|<em>w</em>| = ∫ (4<em>x</em> ² - 2) / (<em>x</em> - <em>x</em> ³) d<em>x</em>

<em />

For the remaining integral, expand the integrand into partial fractions.

<em>x</em> - <em>x</em> ³ = <em>x</em> (1 - <em>x</em> ²) = <em>x</em> (1 - <em>x</em>) (1 + <em>x</em>)

→   (4<em>x</em> ² - 2) / (<em>x</em> - <em>x</em> ³) = <em>a </em>/<em>x</em> + <em>b </em>/ (1 - <em>x</em>) + <em>c </em>/ (1 + <em>x</em>)

→   4<em>x</em> ² - 2 = <em>a</em> (1 - <em>x</em> ²) + <em>b x</em> (1 + <em>x</em>) + <em>c</em> <em>x</em> (1 - <em>x</em>)

→   4<em>x</em> ² - 2 = (-<em>a</em> + <em>b</em> - <em>c</em>) <em>x</em> ² + (<em>b</em> + <em>c</em>) <em>x</em> + <em>a</em>

→   -<em>a</em> + <em>b</em> - <em>c</em> = 4, <em>b</em> + <em>c</em> = 0, <em>a</em> = -2

→   <em>a</em> = -2, <em>b</em> = 1, <em>c</em> = -1

→   (4<em>x</em> ² - 2) / (<em>x</em> - <em>x</em> ³) = -2/<em>x</em> + 1 / (1 - <em>x</em>) - 1 / (1 + <em>x</em>)

Then

ln|<em>w</em>| = ∫ (-2/<em>x</em> + 1 / (1 - <em>x</em>) - 1 / (1 + <em>x</em>)) d<em>x</em>

ln|<em>w</em>| = -2 ln|<em>x</em>| - ln|1 - <em>x</em>| - ln|1 + <em>x</em>| + <em>C</em>

ln|<em>w</em>| = -ln|<em>x</em> ² (1 - <em>x</em> ²)| + <em>C</em>

exp(ln|<em>w</em>|) = exp(-ln|<em>x</em> ² (1 - <em>x</em> ²)| + <em>C </em>)

<em>w</em> = <em>C</em> / (<em>x</em> ² (1 - <em>x</em> ²))

<em>v'</em> = <em>C</em> / (<em>x</em> ² (1 - <em>x</em> ²))

Solve for <em>v(x)</em> by integrating both sides, expanding the right side into partial fractions again:

<em>x</em> ² (1 - <em>x</em> ²) = <em>x</em> ² (1 - <em>x</em>) (1 + <em>x</em>)

→   1 / (<em>x</em> ² (1 - <em>x</em> ²)) = <em>a</em> / <em>x</em> + <em>b</em> / <em>x</em> ² + <em>c</em> / (1 - <em>x</em>) + <em>d</em> / (1 + <em>x</em>)

→   1 = <em>a x </em>(1 - <em>x</em> ²) + <em>b</em> (1 - <em>x</em> ²) + <em>c</em> <em>x</em> ² (1 + <em>x</em>) + <em>d</em> <em>x </em>² (1 - <em>x</em>)

→   1 = (-<em>a</em> + <em>c</em> - <em>d</em>) <em>x</em> ³ + (-<em>b</em> + <em>c</em> + <em>d</em>) <em>x</em> ² + <em>a</em> <em>x</em> + <em>b</em>

→   -<em>a</em> + <em>c</em> - <em>d</em> = 0, -<em>b</em> + <em>c</em> + <em>d</em> = 0, <em>a</em> = 0, <em>b</em> = 1

→   <em>a</em> = 0, <em>b</em> = 1, <em>c</em> = 1/2, <em>d</em> = 1/2

→   1 / (<em>x</em> ² (1 - <em>x</em> ²)) = 1/<em>x</em> ² + 1/2 (1 / (1 - <em>x</em>) + 1 / (1 + <em>x</em>))

d<em>v</em>/d<em>x</em> = <em>C</em> (1/<em>x</em> ² + 1/2 (1 / (1 - <em>x</em>) + 1 / (1 + <em>x</em>)))

d<em>v</em> = <em>C</em> (1/<em>x</em> ² + 1/2 (1 / (1 - <em>x</em>) + 1 / (1 + <em>x</em>))) d<em>x</em>

Integrate both sides:

∫ d<em>v</em> = ∫ <em>C</em> (1 / <em>x</em> ² + 1/2 (1 / (1 - <em>x</em>) + 1 / (1 + <em>x</em>))) d<em>x</em>

<em>v</em> = <em>C</em>₁ (-1/<em>x</em> - 1/2 ln|1 - <em>x</em>| + 1/2 ln|1 + <em>x</em>|) + <em>C</em>₂

<em>v</em> = <em>C</em>₁ (1/2 ln|(1 + <em>x</em>) / (1 - <em>x</em>)| - 1/<em>x</em>) + <em>C</em>₂

Solve for <em>y</em>₂<em>(x)</em> by multiplying both sides by <em>x</em> :

<em>y</em>₂ = <em>C</em>₁ (1/2 <em>x </em>ln|(1 + <em>x</em>) / (1 - <em>x</em>)| - 1) + <em>C</em>₂ <em>x</em>

Now, <em>y</em>₁<em>(x)</em> = <em>x</em>, so we can omit the last term from the second solution, giving us

<em>y</em>₂<em>(x)</em> = <em>C</em> (1/2 <em>x </em>ln|(1 + <em>x</em>) / (1 - <em>x</em>)| - 1)

You might be interested in
Sarah got £72 for her birthday. She spent 40% of the money on
zvonat [6]

Solution: She has £36 remaining.

To solve this is fairly simple.  First we multiple 72 by .4 to get 40%.  This gives us 28.8.  

We then subtract 28.8 by 72 to get the money she has remaining after she spends 40%.  The answer to this is 43.2

Then she spends 1/6 on makeup.  So we divide 43.2 by 6 and multiply again by 5, which gives us 36.

6 0
3 years ago
Use the Rational Zeros Theorem to write a list of all potential rational zeros. (5 points)
yawa3891 [41]

So the Rational Zeros Theorem states that <u>the potential zeros are ± P/Q, with P = factors of the constant and Q = factors of the leading coefficient.</u>

In this case, the constant is -3 and the leading coefficient is 2.

  • P = 1,3
  • Q = 1,2

With P and Q established, divide them all as such:

\pm \frac{1}{1}, \pm \frac{3}{1}, \pm \frac{1}{2}, \pm \frac{3}{2}\\\\\pm 1,\pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}

<u>In short, your potential zeros are ± 1/2, ± 3/2, ± 1, and ± 2.</u>

4 0
3 years ago
Read 2 more answers
For every truck a police officer encounters she writes down T, for every car C, for every van V, and for every vehicle that is n
Kruka [31]

Answer:

5 = T

8 = C

3 = V

3 = O

which means its other because it said it is not a car, truck or van so its other meaning O

O = other

Answer: O

Step-by-step explanation: Theirs really nothing to it just pay attention to the hint :)

4 0
3 years ago
Use the function below to find F(2)<br><br> F(x)=1/3•4^x
AnnZ [28]

Answer

The answer is 16/3

Step-by-step-explain

F(x) = ⅓ • 4ˣ, F(2)

F(2) = ⅓ • 4²

F(2) = ⅓ • 16

F(2) = 16/3

Thus, The answer is 16/3

<u>-TheUnknownScientist</u>

7 0
3 years ago
Read 2 more answers
What happened when the rabbit caught his head in a fan
snow_lady [41]
What is this question asking
8 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose you deposit P dollars into an account that pays 3% annual interest
    15·1 answer
  • To the nearest hundredth, what is the length of line segment AB?
    11·1 answer
  • What is the equation in point slope form of the line that passes through the point (–2, 4)(–2, 4) and has a slope of 5?
    11·1 answer
  • Write the quadratic question f(x)=3x^2-24x+49 in the form of f(x)= a(x-h)^2+k
    13·1 answer
  • Solve the equation for k, in terms of h.
    15·2 answers
  • Please solve this -3=a/6
    6·2 answers
  • Cuanto son 2 pulgadas en metros
    5·2 answers
  • A triangle pattern is shown below.
    13·1 answer
  • Angles α and β are the two acute angles in a right triangle, where α = 5x 3 + 20 and β = 2x 3 + 14. Find α.
    6·2 answers
  • Choose the expression that correctly compares 13.261 and 13.265.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!