Answer:
From -15⁰ to 0⁰
H=mc¶
where H= heat absorbed or evolved
m=mass involved
c=specific heat capacity
¶=change in temperature
H=mc¶
The amount of air resistance<span> an </span>object<span> experiences depends on its speed, its cross-sectional area, its shape and the density of the </span>air<span>. </span>Air<span> densities vary with altitude, temperature and humidity. Nonetheless, 1.29 kg/m</span>3<span> is a very reasonable value. The shape of an </span>object affects<span> the drag coefficient (C</span>d<span>)</span>
W = Fd
W = 1225 N x 10 m = 12250
Answer:
The bicycle slows down because of the frictional force acting on the tyres of the bicycle. When this frictional force overcomes the force applied by paddling, the bicycle stops.
Complete Question
A certain refrigerator, operating between temperatures of -8.00°C and +23.2°C, can be approximated as a Carnot refrigerator.
What is the refrigerator's coefficient of performance? COP
(b) What If? What would be the coefficient of performance if the refrigerator (operating between the same temperatures) was instead used as a heat pump? COP
Answer:
a
b
Explanation:
From the question we are told that
The lower operation temperature of refrigerator is
The upper operation temperature of the refrigerator is
Generally the refrigerators coefficient of performance is mathematically represented as
=>
=>
Generally if a refrigerator (operating between the same temperatures) was instead used as a heat pump , the coefficient of performance is mathematically represented as
=>
=>