Answer:
The correct option is
(e)either (c) or (d) could be correct.
Explanation:
The electric field of a charge radiates out in all directions and the intensity of the electric field strength given by E = F/q₀, diminishes as the lines of force moves further away from the source. The direction of F and E is in the line of potential motion of the source charge in the field.
Equipotential surfaces are locations in the radiated electric that have the same field strength or electric potential. The work done in moving within an equipotential surface is zero and as such since
Work = Force × distance = 0 where distance ≠ 0.
The force acting between two points on an equipotential surface is also zero or the component of the force within an equipotential surface is zero and since there is a force in the electric field, it is acting at right angles to the equipotential surface which could be horizontally to the left or right directions where the equipotential surfaces due to the charge distribution are in the vertical plane.
Therefore it is either horizontally to the left, or horizontally to the right.
Answer:
23376 days
Explanation:
The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

where k is a constant.
From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

Let the orbital period of the earth be
and its mean distance of from the sun be
.
Also let the orbital period of the planet be
and its mean distance from the sun be
.
Equation (2) therefore implies the following;

We make the period of the planet
the subject of formula as follows;

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

Substituting equation (5) into (4), we obtain the following;

cancels out and we are left with the following;

Recall that the orbital period of the earth is about 365.25 days, hence;
