1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
12

What is the name of the area between the shoreline and the continental slope ?

Physics
1 answer:
nikdorinn [45]3 years ago
3 0

Continental shelf is the name of the area between the shoreline and the continental slope.

Answer: Option A

<u>Explanation: </u>

The continental shelf refers the continent' edge which presents under the ocean. It expands from the continent' edge to a drop points referred as shelf break. As this break, the underwater edge of the continental shelf initiates to plummet deep into the seabed.

According to convention, the continental shelf of the coastal state includes the sinking area of the coastal state, the seabed and undersea region' subsoil extending beyond its territorial sea to its outer edge point of the continent or 200 km of nautical miles without extending the outer periphery of continental margin.

You might be interested in
Which of these has the most inertia?
VashaNatasha [74]

Answer:

A. a parked bus

Explanation:

Because a parked bus probably has the most mass out of these 4 and as we know, mass is that quantity that is solely dependent upon the inertia of an object. The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.

3 0
3 years ago
5. A massless string passes over a frictionless pulley and carries
devlian [24]

Answer:

2m₁m₃g / (m₁ + m₂ + m₃)

Explanation:

I assume the figure is the one included in my answer.

Draw a free body diagram for each mass.

m₁ has a force T₁ up and m₁g down.

m₂ has a force T₁ up, T₂ down, and m₂g down.

m₃ has a force T₂ up and m₃g down.

Assume that m₁ accelerates up and m₂ and m₃ accelerate down.

Sum of the forces on m₁:

∑F = ma

T₁ − m₁g = m₁a

T₁ = m₁g + m₁a

Sum of the forces on m₂:

∑F = ma

T₁ − T₂ − m₂g = m₂(-a)

T₁ − T₂ − m₂g = -m₂a

(m₁g + m₁a) − T₂ − m₂g = -m₂a

m₁g + m₁a + m₂a − m₂g = T₂

(m₁ − m₂)g + (m₁ + m₂)a = T₂

Sum of the forces on m₃:

∑F = ma

T₂ − m₃g = m₃(-a)

T₂ − m₃g = -m₃a

a = g − (T₂ / m₃)

Substitute:

(m₁ − m₂)g + (m₁ + m₂) (g − (T₂ / m₃)) = T₂

(m₁ − m₂)g + (m₁ + m₂)g − ((m₁ + m₂) / m₃) T₂ = T₂

(m₁ − m₂)g + (m₁ + m₂)g = ((m₁ + m₂ + m₃) / m₃) T₂

m₁g − m₂g + m₁g + m₂g = ((m₁ + m₂ + m₃) / m₃) T₂

2m₁g = ((m₁ + m₂ + m₃) / m₃) T₂

T₂ = 2m₁m₃g / (m₁ + m₂ + m₃)

8 0
4 years ago
A pencil is rolled off a table of height 0.92 m. If it has horizontal speed pf 1.4 m/s, how long does it take the pencil to reac
Alenkasestr [34]

The distance an object falls, from rest, in gravity is

                         D  =  (1/2) (G) (T²)

                        'T' is the number seconds it falls.

In this problem,

                         0.92 meter = (1/2) (9.8) (T²)

Divide each side by  4.9 :   0.92 / 4.9 = T²

Take the square root
of each side:                          √(0.92/4.9) = T

                                                  0.433 sec = T    

The horizontal speed doesn't make a bit of difference in
how long it takes to reach the floor.  BUT ... if you want to
know how far from the table the pencil lands, you can find
that with the horizontal speed.

The pencil is in the air for  0.433 second.
In that time, it travels
                                   (0.433s) x (1.4 m/s) = 0.606 meter

from the edge of the table.
 
3 0
3 years ago
5. What is the density of 4.5 mL of a liquid that has a mass of 1.3 grams?
antoniya [11.8K]

Answer:

A. 0.289g/mL

Explanation:

Using the equation for density which is d = m/v  or density = mass/volume, we input 1.3g/4.5mL and get 0.289g/mL.

5 0
3 years ago
Read 2 more answers
An object with a mass of m = 3.85 kg is suspended at rest between the ceiling and the floor by two thin vertical ropes.
Aleksandr-060686 [28]

The tension in the upper rope is determined as 50.53 N.

<h3>Tension in the upper rope</h3>

The tension in the upper rope is calculated as follows;

T(u) = T(d)+ mg

where;

  • T(u) is tension in upper rope
  • T(d) is tension in lower rope

T(u) = 12.8 N + 3.85(9.8)

T(u) = 50.53 N

Thus, the tension in the upper rope is determined as 50.53 N.

Learn more about tension here: brainly.com/question/918617

#SPJ1

6 0
2 years ago
Other questions:
  • A 50 g ball of clay traveling at speed v0 hits and sticks to a 1.0 kg block sitting at rest on a frictionless surface. part a wh
    7·1 answer
  • A capacitor is connected to a power source and begins charging.
    8·2 answers
  • A rock falls from a tower that is 320 feet high. As it is​ falling, its height is given by the formula h equals 320 minus 16 t s
    15·1 answer
  • What is the HORIZONTAL component of a vector with a magnitude of 125 m/s and an angle of 25 degrees?
    15·1 answer
  • A cuboid has sides that are 0.2m, 0.4m and 0.7m. The mass of the cuboid is 0.5kg. Calculate the density.
    6·1 answer
  • What is the density of an object with the mass of 125g and a volume of 176 m
    12·2 answers
  • A Force is applied onto a mass causing it to accelerate. If the same Force was applied to a SMALLER mass, what would happen to t
    12·2 answers
  • Question 1 of 10
    5·2 answers
  • The forces acting on a ball sitting on the ground are
    13·1 answer
  • What important component is still scarce for American manufacturers, which had 40 days' worth before the pandemic but only had a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!