Explanation:
F = MA
200 = 100 * A
A = 200/100
A = 2m/sec^2
<h3><em>hope </em><em>it </em><em>helps </em><em>you </em></h3>
Answer:
<em><u>172,000 second </u></em>
<em><u>I'M</u></em><em><u> </u></em><em><u>NOT</u></em><em><u> </u></em><em><u>SURE</u></em><em><u> </u></em><em><u>THAT</u></em><em><u> </u></em><em><u>THIS</u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>RIGHT</u></em><em><u> </u></em><em><u>OR</u></em><em><u> </u></em><em><u>WRONG</u></em><em><u> </u></em><em><u> </u></em><em><u>IF</u></em><em><u> </u></em><em><u>IT'S</u></em><em><u> </u></em><em><u>WRONG</u></em><em><u> </u></em><em><u>THEN</u></em><em><u> </u></em><em><u>SORRY</u></em><em><u> </u></em>
Answer:
The surface gravity g of the planet is 1/4 of the surface gravity on earth.
Explanation:
Surface gravity is given by the following formula:

So the gravity of both the earth and the planet is written in terms of their own radius, so we get:


The problem tells us the radius of the planet is twice that of the radius on earth, so:

If we substituted that into the gravity of the planet equation we would end up with the following formula:

Which yields:

So we can now compare the two gravities:

When simplifying the ratio we end up with:

So the gravity acceleration on the surface of the planet is 1/4 of that on the surface of Earth.
Yes a kg of hydrogen will have more atoms than a kg of lead, because lead has a higher atomic mass, than hydrogen so it will take more atoms of hydrogen to make a kg than lead
Answer:
B
Explanation:
The correct option for the question is B that is salt water. In salt water, the density of water is higher so the pressure at the end of tube containing salt water will be greater. As according to the hydrostatic law the pressure at a given point will be directly proportional to the distance travelled as well.