Using the phase diagram of methane, the pressure and temperature play a critical role in its stability since a slight change in the pressure or temperature will cause a phase change. At low temperature and high pressure, methane hydrate becomes solid (methane hydrate + ice). When the temperature is increased, it becomes liquid. This is one of the main challenges in harvesting methane hydrate, its instability.
Given info
d = 0.000250 meters = distance between slits
L = 302 cm = 0.302 meters = distance from slits to screen
= angle to 8th max (note how m = 8 since we're comparing this to the form )
(n = 5 as we're dealing with the 5th minimum )
---------------
Method 1
Make sure your calculator is in degree mode.
-----------------
Method 2
-----------------
Method 3
There is a slight discrepancy (the first two results were 611 nm while this is roughly 613 nm) which could be a result of rounding error, but I'm not entirely sure.
Because 2 carbon attach to one's of each of the others
Answer:
0.31
Explanation:
horizontal force, F = 750 N
mass of crate, m = 250 kg
g = 9.8 m/s^2
The friction force becomes applied force = 750 N
According to the laws of friction,
Friction force = μ x Normal reaction of the surface
here, μ be the coefficient of friction
750 = μ x m g
750 = μ x 250 x 9.8
μ = 0.31
Thus, the coefficient of static friction is 0.31.
Answer:
Explanation:
During the first .8 s , the elevator is under acceleration . It starts from initial velocity u = 0 , final velocity v = 1.2 m /s , time = .8 s
v = u + at
1.2 = 0 + .8 a
a = 1.2 / .8
= 1.5 m /s²
During the acceleration in upward direction , let reaction force of ground on man be R .
Net force on man = R - mg
Applying Newton's 2 nd law
R - mg = ma
R = m ( g + a )
= 72 ( 9.8 + 1.5 )
= 813.6 N .
This reaction force will be measured by spring scale , so reading of spring scale will be 813.6 N .