Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Answer:
The duration is ![T =72 \ years /tex]Explanation:From the question we are told that The distance is [tex]D = 35 \ light-years = 35 * 9.46 *10^{15} = 3.311 *10^{17} \ m](https://tex.z-dn.net/?f=T%20%20%3D72%20%5C%20%20years%20%2Ftex%5D%3C%2Fp%3E%3Cp%3EExplanation%3A%3C%2Fp%3E%3Cp%3EFrom%20the%20question%20we%20are%20told%20that%20%3C%2Fp%3E%3Cp%3E%20%20%20%20The%20%20distance%20is%20%20%5Btex%5DD%20%20%3D%20%2035%20%5C%20light-years%20%3D%2035%20%2A%20%209.46%20%2A10%5E%7B15%7D%20%3D%203.311%20%2A10%5E%7B17%7D%20%5C%20%20m%20)
Generally the time it would take for the message to get the the other civilization is mathematically represented as

Here c is the speed of light with the value 
=> 
=> 
converting to years



Now the total time taken is mathematically represented as

=> 
=> [tex]T =72 \ years /tex]
Atomic Number
or
Number of Protons
ΩΩΩΩΩΩΩΩΩΩ
Answer:
λ = 5.2 x 10⁻⁷ m = 520 nm
Explanation:
From Young's Double Slit Experiment, we know the following formula for the distance between consecutive bright fringes:
Δx = λL/d
where,
Δx = fringe spacing = distance of 1st bright fringe from center = 0.00322 m
L = Distance between slits and screen = 3.1 m
d = Separation between slits = 0.0005 m
λ = wavelength of light = ?
Therefore,
0.00322 m = λ(3.1 m)/(0.0005 m)
λ = (0.00322 m)(0.0005 m)/(3.1 m)
<u>λ = 5.2 x 10⁻⁷ m = 520 nm</u>
Neap tide = tide where there is the least difference between high and low water levels
Spring tide = tide where there is the greatest difference between high and low water levels
Equator = an imaginary line drawn around earth dividing it into northern and southern hemispheres
Seasons = the divisions of the year marked by specific weather patterns and daylight hours.
Hope this helps!