Answer:
B
Explanation:
because kinetic energy is directly proportional to temperature so the hottor the object, the more kinetic energy.
Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

So now we can find the magnitude of the initial velocity:

The acceleration which is gained by an object because of the gravitational force is called its acceleration due to gravity. Its SI unit is m/s2. Acceleration due to gravity is a vector, which means it has both a magnitude and a direction. The formula is ‘the change in velocity= gravity x time’ The acceleration due to gravity at the surface of Earth is represented as g. It has a standard value defined as 9.80665 m/s2.[1]
Thus, more than 30 J of potential energy can be loosed by the ball. Thus, the gravitational potential energy of the ball is more than 30 J.
If there is no air resistance, the ball's potential energy is entirely transformed into kinetic energy. When air resistance is taken into account, a portion of the potential energy is used to overcome it. Thus, AU > AKE. In the current scenario, a ball gains 30 J of kinetic energy while falling and is treated as encountering air resistance. The energy that an object retains due to its position in relation to other objects, internal stresses, electric charge, or other factors is known as potential energy in physics. The potential energy will be transformed into kinetic energy if the stones fall. High on the tree, branches have the potential to fall, which gives them energy. Chemical potential energy exists in the food we eat.
Learn more about potential energy here:
brainly.com/question/24284560
#SPJ4