Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂=
= 6.57 m/s
Answer: See explanation
Explanation:
Inertia is the force that keeps an object at rest. Inertia is referred to as the property which results in it continuing in the state of rest that it is unless there's an external force that acts upon it.
Inertia keeps objects and things in place and it holds the universe together. When there's no force that's acting in an object, such object will continue to move in a straight line and also at a constant speed.
A car with a velocity of 22 m/s is accelerated at a rate of 1.6
for 6.8s has the final velocity t be 32.88 m/s.
The acceleration means the amount of velocity changing per unit time.
The given data:
initial velocity, u = 22 m/s
time, t = 6.8 s
acceleration, a = 1.6 
We will be using the equation of motion:
v = u + at



The final velocity become 32.88 m/s.
To learn more about Attention here:
https://brainly.in/question/10557838
#SPJ4
<span>A researcher claiming that females were more empathetic than males would test that hypothesis by using inferential statistics.</span>